# CBSE Solutions for Class 11 Maths

#### Select CBSE Solutions for class 10 Subject & Chapters Wise :

Define whether the statement is true or false: The relation defined as {(3, 1), (2, 1), (8, 1), (10, 1), (4, 1), (7, 1)} is a function

Answer :

True

Define whether the statement is true or false: The relation defined as {(3, 1), (4, 2), (6, 4), (8, 3), (10, 5), (12, 7), (14, 6)} is not a function

Answer :

False

If f (a) = a2 – 3a + 4, then find the values of a satisfying the equation f (a) = f (2a + 1).

Answer :

Given:
f (a) = a2 – 3a + 4
Therefore,
f (2a + 1) = (2a + 1)– 3(2a + 1) + 4
= 4a2 + 1 + 4a – 6a – 3 + 4
= 4a2 – 2a + 2
Now,
f (a) = f (2a + 1)
a2 – 3a + 4 = 4a2 – 2a + 2
4a2 – a2 – 2a + 3a + 2 – 4 = 0
3a2 + a – 2 = 0
3a2 + 3a – 2a – 2 = 0
3x(a + 1) – 2(a +1) = 0
(3a – 2)(a +1) = 0
(a + 1) = 0  or  ( 3a – 2) = 0
a=−1 or a=23

Hence, a=−1, 23

 1 The domain of definition of the function f(x) = 1/ |x-1| A R − {2} 2 The domain of definition of the function f(x) = x - 21 B R − {1} 3 The domain of definition of the function f(x) = 1/ |x-2| C ∞

Answer :

1-B, 2-C, 3-A

 1 The domain of definition of the function f(x) = log |x| A R-{0} 2 The range of the function f(y) = |y − 1| B (−∞, 0) 3 The range of the function f(y) = - |y| C [0, ∞)

Answer :

1-A, 2-C, 3-B

 1 N A Real No. 2 W B Natural No. 3 Z C Whole No. 4 R D Integers

Answer :

1-B, 2-C, 3-D, 4-A

If X = {1, 2, 4}, Y= {2, 4, 5}, Z = {2, 5}

 1 Y+Z A X-Y 2 X+Z B Y 3 X-(Y+Z) C X 4 X+Y-Z D X+Y

Answer :

1-B, 2-D, 3-A, 4-C

If X = {1, 2, 4}, Y= {2, 4, 5}, Z = {2, 5}

 1 X-Y A {4} 2 Y-Z B {1,4} 3 X-Z C {1} 4 X+Y D {1,2,4,5}

Answer :

1-C, 2-A, 3-B, 4-D

### Take a Test

Choose your Test :

The GSEB Books for class 10 are designed as per the syllabus followed Gujarat Secondary and Higher Secondary Education Board provides key detailed, and a through solutions to all the questions relating to the GSEB textbooks.

The purpose is to provide help to the students with their homework, preparing for the examinations and personal learning. These books are very helpful for the preparation of examination.

For more details about the GSEB books for Class 10, you can access the PDF which is as in the above given links for the same.