CBSE Solutions for Class 11 Maths

Select CBSE Solutions for class 10 Subject & Chapters Wise :

If in the expansion of (1 + y)20, the coefficients of rth and (r + 4)th terms are equal, then r is equal to

Hide | Show

Answer :

9

The term without y in the expansion of (2y − 1/2y2)12 is

Hide | Show

Answer :

7920

The middle term in the expansion of (2y2/3 + 3/2y2)10 is

Hide | Show

Answer :

252

If an the expansion of (1+y)15, the coefficients of (2r+3)th and (r−1)th terms are equal, then the value of r is

Hide | Show

Answer :

5

In the expansion of (y2−1/3y)9, the term without y  is equal to

Hide | Show

Answer :

28/243

The coefficient of x−17 in the expansion of (x4−1/x3)15 is

Hide | Show

Answer :

−1365

The number of irrational terms in the expansion of (41/5+71/10)45 is

Hide | Show

Answer :

41

If A and B are the sums of odd and even terms respectively in the expansion of (y + a)n, then (y + a)2n − (y − a)2n is equal to

Hide | Show

Answer :

4 AB

If in the expansion of (x + y)n and (x + y)n + 3, the ratio of the coefficients of second and third terms, and third and fourth terms respectively are equal, then n is

Hide | Show

Answer :

5

The coefficient of 1/y in the expansion of (1+y)n (1+1/y)n is

Hide | Show

Answer :

2n ! / [(n-1) ! (n+1) !]

If T2/T3 in the expansion of (a+b)n  and T3/T4 in the expansion of (a+b)n+3 are equal, then n =

Hide | Show

Answer :

5

The total number of terms in the expansion of (y+a)100 + (y−a)100 after simplification is

Hide | Show

Answer :

51

The coefficient of x4 in (x/2 – 3/x2)10 is

Hide | Show

Answer :

405/256

If the coefficient of y in (y2+λ/y)5 is 270, then λ=

Hide | Show

Answer :

3

If the sum of odd numbered terms and the sum of even numbered terms in the expansion of (x+a)n are A and B respectively, then the value of (x2−a2)n is

Hide | Show

Answer :

A2 − B2​​​​​​​

In the expansion of ( ½ y1/3 + y−1/5)8, the term independent of y is

Hide | Show

Answer :

T6

If in the expansion of (1 + x)n, the coefficients of 5th, 6th and 7th terms are in A.P., then n is equal to

Hide | Show

Answer :

7, 14

In the expansion of (y − 1/3y2)9, the term independent of y is

Hide | Show

Answer :

T4

If in the expansion of (y4 − 1/y3)15, x−17 occurs in rth term, then

Hide | Show

Answer :

r = 12

If the sum of the binomial coefficients of the expansion (2y + 1/y)n is equal to 256, then the term independent of y is

Hide | Show

Answer :

1120

If the fifth term of the expansion ( p2/3 + p−1)n does not contain 'p'. Then n is equal to

Hide | Show

Answer :

10

The coefficient of y−3 in the expansion of (y − n/y)11 is

Hide | Show

Answer :

−330 n7

The coefficient of the term independent of x in the expansion of (ax+bx)14 is

Hide | Show

Answer :

14!/(7!)2 a7 b7

The coefficient of y5 in the expansion of (1+y)21 + (1+y)22 + ... + (1+y)30  

Hide | Show

Answer :

31C6 − 21C6

If rth term in the expansion of (2y2−1/y)12 is without y, then r is equal to

Hide | Show

Answer :

9

Find the middle terms(s) in the expansion of : (x – 1/x)2n+1

Hide | Show

Answer :

(x + 1/x)2n+1

Here, (2n+1)  is an odd number.

Therefore, the middle terms are (2n+1+1/2)th and [(2n+1+1)/2 + 1]th i.e. (n+1)th and (n+2)th terms.

Now, we have: Tn+1 = 2n+1Cn x2n+1−n  × (1)n/xn = (1)n 2n+1Cn x

And,Tn+2 = Tn+1+1 = 2n+1Cn+1 x2n+1−n−1   (1)n+1/xn+1 = (1)n+1 2n+1Cn+1 × 1/x

Find the middle terms(s) in the expansion of : (2x − x2/4)9

Hide | Show

Answer :

(2x + x2/4)9

Here, n is an odd number.

Therefore, the middle terms are [(n+1)/2]th and [(n+1)/2 + 1]th, i.e. 5th and 6th terms.

Now, we haveT5 = T4+1 = 9C4 (2x)9−4 (x2/4)4 = (9×8×7×6)/(4×3×2) × 25 1/44 x5+8 =63/4 x13

And,T6 = T5+1 = 9C5 (2x)9−5 (x2/4)5 = (9×8×7×6)/(4×3×2) × 24 1/45 x4 + 10 = 63/32 x14

Find the middle terms(s) in the expansion of : (1 + 3x + 3x2 + x3)2n

Hide | Show

Answer :

(1 + 3x - 3x2 + x3)2n =(1 - x)6n

Here, n  is an even number.

∴ Middle term = (6n/2 + 1 )th = (3n+1)th term

Now, we have T3n+1 = 6nC3n x3n = (6n)!/(3n!)2 x3n

Find the middle terms(s) in the expansion of : (1 + 2x + x2)n

Hide | Show

Answer :

(1 + 2x + x2)n

= (1+x)2n

n is an even number.

∴ Middle term = (2n/2 + 1)th = (n+1)th term

Now, we haveTn+1 = 2nCn (1)n (x)n = (2n)!/(n!)2 (1)n xn

Find the middle terms(s) in the expansion of : (x + 1/x)10

Hide | Show

Answer :

(x + 1/x)10

Here, n is an even number. 

 Middle term = (10/2 + 1)th= 6th term

 Now, we haveT6 = T5 + 1 =10C5 x10−5 (1/x)5 = (10×9×8×7×6)/(5×4×3×2) = 252

Take a Test

Choose your Test :

The GSEB Books for class 10 are designed as per the syllabus followed Gujarat Secondary and Higher Secondary Education Board provides key detailed, and a through solutions to all the questions relating to the GSEB textbooks.

The purpose is to provide help to the students with their homework, preparing for the examinations and personal learning. These books are very helpful for the preparation of examination.

For more details about the GSEB books for Class 10, you can access the PDF which is as in the above given links for the same.

ask-a-doubt ask-a-doubt