LOADING . . .

CBSE Solutions for Class 11 English

GSEB std 10 science solution for Gujarati check Subject Chapters Wise::

Define whether the statement is true or false: The relation defined as {(3, 1), (2, 1), (8, 1), (10, 1), (4, 1), (7, 1)} is a function

Hide | Show

જવાબ : True


Define whether the statement is true or false: The relation defined as {(3, 1), (4, 2), (6, 4), (8, 3), (10, 5), (12, 7), (14, 6)} is not a function

Hide | Show

જવાબ : False


Define whether the statement is true or false: The relation defined as {(1, 5), (1, 5), (2, 3)} is a function

Hide | Show

જવાબ : False


Define whether the statement is true or false: The below graph is not a function

 

Hide | Show

જવાબ : False


Define whether the statement is true or false: The below graph isn’t a function

Hide | Show

જવાબ : False


Define whether the statement is true or false: The below graph is a function

Hide | Show

જવાબ : False


Find the domain and range of the following real function: q=1/ (√11−p)

Hide | Show

જવાબ : Now this function is defined for p where 11−p>0 as
or p<11
so Domain is (−∞, 11) (−∞, 11)
since square root gives positive values only. Also this function cannot have zero value; So Range is (0, ∞)


Find the domain and range of the following real function: q=√2−p

Hide | Show

જવાબ : Now this function is defined for x where 2−p≥0
or p≤2
So Domain is (−∞, 2] (−∞, 2]

since square root gives positive values only, Range is [0, ∞) [0, ∞)


Define whether the statement is true or false: The ordered pair {(lynx) |x < 3y+1} is a function

Hide | Show

જવાબ : False


Define whether the statement is true or false: The ordered pair {(lynx) |x=y2} is a relation but not function

Hide | Show

જવાબ : False


Define whether the statement is true or false: The ordered pair {(pique)| p=3 and q is real number} is a relation and function
 

Hide | Show

જવાબ : False


Find the domain and range of the following real function: q=−p4+3

Hide | Show

જવાબ : Domain is all the Real number as function is defined for all values
Domain =R
Now it can be written as
q=3−p4
Now p4 will always be positive for all real values of pesos Range will be (−∞,3](−∞,3]


Define whether the statement is true or false: A function is relations but all relations are functions

Hide | Show

જવાબ : False


Define whether the statement is true or false: A function is defined as
g(x) =−√−2x+5g(x) =−−2x+5
the domain is y≤ 5/2 and Range is f(y) ≤ 0

Hide | Show

જવાબ : True


Define whether the statement is true or false: P= {1, 2, and 3} Q= {alb}. The total number of relation from P × Q is 64

Hide | Show

જવાબ : True


Find the domain and range of the following real function: q=3p−7

Hide | Show

જવાબ : Domain is all the Real number as function is defined for all values
Domain =R
The is a linear function. Range is also R


Find the domain and range of the following real function: q=−|p|

Hide | Show

જવાબ : Domain is all the Real number as function is defined for all values
Domain =R
The function always provides negative value. So range is (−∞, 0] (−∞, 0]


Find the domain and range of the following real function: q=p2

Hide | Show

જવાબ : Domain is all the Real number as function is defined for all values
Domain =R
The function always provides positive value. So range is [0, ∞) [0, ∞)


There are two functions defined as below
Let A={(0,5),(1,4),(2,3),(3,2),(4,1),(5,0)}
B ={(1,1),(2,4),(3,9),(4,16),(5,25),(6,36)}

List the ordered pair of (B/A) in set notation

Hide | Show

જવાબ : The ordered pair of B/A
(1, 1/4), (2, 4/3), (3, 9/2), (4, 16)


There are two functions defined as below
Let A={(0,5),(1,4),(2,3),(3,2),(4,1),(5,0)}
B ={(1,1),(2,4),(3,9),(4,16),(5,25),(6,36)}

What is the domain of B/an

Hide | Show

જવાબ : The domain for B/A is {1, 2, 3, and 4} as on 5 functions p is zero


There are two functions defined as below
Let A={(0,5),(1,4),(2,3),(3,2),(4,1),(5,0)}
B ={(1,1),(2,4),(3,9),(4,16),(5,25),(6,36)}

List the ordered pair of (B-A) in set notation

Hide | Show

જવાબ : (1,-3), (2, 1), (3, 7), (4, 15), (25)


There are two functions defined as below
Let A={(0,5),(1,4),(2,3),(3,2),(4,1),(5,0)}
B ={(1,1),(2,4),(3,9),(4,16),(5,25),(6,36)}

What is the domain of function (B-A)

Hide | Show

જવાબ : The domain of function (B-A) is the intersection of domain of A and B
So, Domain of (B-A) = {1, 2, 3, 4, 5}


There are two functions defined as below
Let A={(0,5),(1,4),(2,3),(3,2),(4,1),(5,0)}
B ={(1,1),(2,4),(3,9),(4,16),(5,25),(6,36)}

What is the domain and range of A

Hide | Show

જવાબ : Domain of A ={0,1,2,3,4,5}
Range of A ={5,4,3,2,1,0}


There are two functions defined as below
Let A={(0,5),(1,4),(2,3),(3,2),(4,1),(5,0)}
B ={(1,1),(2,4),(3,9),(4,16),(5,25),(6,36)}

What is the domain and range of B

Hide | Show

જવાબ : Domain of B ={1,2,3,4,5,6}
Range of A ={1,4,9,16,25,36}


Let A = [1] and B = [3]. Find the total number of relation from A into B.

 

Hide | Show

જવાબ : Number of relations from A to B is 21 = 2.


Let A = [1] and B = [3, 4]. Find the total number of relation from A into B.

 

Hide | Show

જવાબ : Number of relations from A to B is 22 = 4.


Let A = [1, 2, 3] and B = [3, 4, 6]. Find the total number of relation from A into B.

 

Hide | Show

જવાબ : Number of relations from A to B is 29 = 512.


Let A = [1, 2] and B = [3, 4, 5]. Find the total number of relation from A into B.

 

Hide | Show

જવાબ : Number of relations from A to B is 26 = 64.


Let A = [1, 2, 3] and B = [3, 4]. Find the total number of relation from A into B.

 

Hide | Show

જવાબ : Number of relations from A to B is 26 = 64.


Write the relation R = {(x, x2): x is a prime number less than 6} in roster form.

 

Hide | Show

જવાબ : R = {(2, 4), (3, 9), (5, 25)}


Write the relation R = {(x, x2): x is an even prime number less than 10} in roster form.

 

Hide | Show

જવાબ : R = {(2, 4)}


Write the relation R = {(x, x2): x is a prime number less than 10} in roster form.

 

Hide | Show

જવાબ : R = {(2, 4), (3, 9), (5, 25), (7, 49)}


Write the relation R = {(x, x3): x is an odd prime number less than 10} in roster form.

 

Hide | Show

જવાબ : R = {(2, 8)}


If f(x) = (x − a) 2 (x − b) 2, find f (a + b).

 

Hide | Show

જવાબ : F (x) = (x – a) 2(x – b) 2
=> f (a + b) = (a + b – a) 2(a + b – b) 2
             = b2a2
Hence, f (a + b) = a2b2 


Write the range of the real function f(x) = |x|.

 

Hide | Show

જવાબ : Given:
f (x) = | x |, x ∈ R
∴ the range of f is [0, ∞)


Write the range of the real function f(x) = -|x|.

 

Hide | Show

જવાબ : Given:
f (x) = -| x |, x ∈ R
∴ the range of f is [0, -∞)


Write the range of the real function f(x) = |-x|.

 

Hide | Show

જવાબ : Given:
f (x) = | -x |, x ∈ R
∴ the range of f is [0, ∞)


Write the range of the real function f(x) = |x|- 1.

 

Hide | Show

જવાબ : Given:
f (x) = | x |-1, x ∈ R
∴ the range of f is [-1, ∞)


Write the range of the real function f(x) = 1 +|x|.

Hide | Show

જવાબ : Given:
f (x) = 1+ | x |, x ∈ R
∴ the range of f is [0, ∞)


Write the range of the real function f(x) = |x|.

 

Hide | Show

જવાબ : Given:
f (x) = | x |, x ∈ R
∴ the range of f is [0, ∞)


Write the range of the real function f(x) = |x|.

 

Hide | Show

જવાબ : Given:
f (x) = | x |, x ∈ R
∴ the range of f is [0, ∞)


Let A and B be two sets such that n (A) = x and n (B) = y, write the number of functions from A to B.

 

Hide | Show

જવાબ : Total number of functions from A to B = ax


Let A and B be two sets such that n (A) = 2 and n (B) = 3, write the number of functions from A to B.

 

Hide | Show

જવાબ : Total number of functions from A to B = 9


Let A and B be two sets such that n (A) = 3 and n (B) = 2, write the number of functions from A to B.

 

Hide | Show

જવાબ : Total number of functions from A to B = 8


Let A and B be two sets such that n (A) = 0 and n (B) = 1, write the number of functions from A to B.

 

Hide | Show

જવાબ : Total number of functions from A to B = 1


Let A and B be two sets such that n (A) = 1 and n (B) = 0, write the number of functions from A to B.

 

Hide | Show

જવાબ : Total number of functions from A to B = 0


Let A and B be two sets such that n (A) = 4 and n (B) = 5, write the number of functions from A to B.

 

Hide | Show

જવાબ : Total number of functions from A to B = 625


Let A and B be two sets such that n (A) = 3 and n (B) = 4, write the number of functions from A to B.

 

Hide | Show

જવાબ : Total number of functions from A to B = 64


Write the relation R = {(x, x3): x is a prime number less than 6} in roster form.

 

Hide | Show

જવાબ : R = {(2, 8), (3, 27), (5, 125), (7, 343)}


Write the relation R = {(x, x3): x is an even prime number less than 10} in roster form.

Hide | Show

જવાબ : R = {(2, 8)}


Find the set of values of x for which the functions f(x) = x2 + 16 and g(x) = -8x are equal.

Hide | Show

જવાબ : It is given that the functions f(x) = x2 + 16 and g(x) = -8x are equal.
f(x) =g(x)

x2+16= -8x

x2+8 xs+16=0

(x+4) (x+4) =0

x+4=0 or x+4=0

x=−4 or x= -4

Hence, the set of values of x for which the given functions are equal is {−4,-4}


Find the set of values of x for which the functions f(x) = x2 + 16 and g(x) = -8x are equal.

Hide | Show

જવાબ : It is given that the functions f(x) = x2 + 16 and g(x) = -8x are equal.
f(x) =g(x)

x2+16= -8x

x2+8 xs+16=0

(x+4) (x+4) =0

x+4=0 or x+4=0

x=−4 or x= -4

Hence, the set of values of x for which the given functions are equal is {−4,-4}


Find the set of values of x for which the functions f(x) = x2 + 18 and g(x) = -11x are equal.

Hide | Show

જવાબ : It is given that the functions f(x) = x2 + 18 and g(x) = -11x are equal.
f(x) =g(x)

x2+18= -11x

x2+11 xs+18=0

(x+9) (x+2) =0

x+9=0 or x+2=0

x=−9 or x= -2

Hence, the set of values of x for which the given functions are equal is {−9,-2}


Find the set of values of x for which the functions f(x) = x2 + 14 and g(x) = -9x are equal.

Hide | Show

જવાબ : It is given that the functions f(x) = x2 + 14 and g(x) = -9x are equal.
f(x) =g(x)

x2+14= -9x

x2+9 xs+14=0

(x+7) (x+2) =0

x+7=0 or x+2=0

x=−7 or x= -2

Hence, the set of values of x for which the given functions are equal is {−7,-2}


Find the set of values of x for which the functions f(x) = x2 and g(x) = - 12 - 8x are equal.

Hide | Show

જવાબ : It is given that the functions f(x) = x2 and g(x) = -12 - 8x are equal.

f(x) =g(x)

x2=-12-8x

x2+ 8x +12=0

(x+6) (x+2) =0

x+2=0 or x+6=0

x=−2 or x=-6
Hence, the set of values of x for which the given functions are equal is {−2,-6}.


Find the set of values of x for which the functions f(x) = 3x2 and g(x) = 6 + x are equal.

Hide | Show

જવાબ : It is given that the functions f(x) = 3x2 and g(x) = 6 + x are equal.

f(x) =g(x)

3x2=6+x

x2−x−6=0

(x-3) (x+2) =0

x+2=0 or x−3=0

x=−2 or x=3
Hence, the set of values of x for which the given functions are equal is {−2, 3}.


Find the set of values of x for which the functions f(x) = x2 − 1 and g(x) = 1 - x are equal.

Hide | Show

જવાબ : It is given that the functions f(x) = x2 − 1 and g(x) = 1 - x are equal.

f(x) =g(x)

x2−1=1-x

x2+x−2=0

(x+2) (x−1) =0

x+2=0 or x−1=0

x=1 or x=-2
Hence, the set of values of x for which the given functions are equal is {−2, 1}.


Find the set of values of x for which the functions f(x) = 3x2 − 1 and g(x) = 3 + x are equal.

Hide | Show

જવાબ : It is given that the functions f(x) = 3x2 − 1 and g(x) = 3 + x are equal.

f(x) =g(x)

3x2−1=3+x

3x2−x−4=0

(x+1) (3x−4) =0

x+1=0 or 3x−4=0

x=−1 or x=4/3
Hence, the set of values of x for which the given functions are equal is {−1, 4/3}.


If f (a) = a2 – 3a + 4, then find the values of a satisfying the equation f (a) = f (2a + 1).

Hide | Show

જવાબ : Given:
f (a) = a2 – 3a + 4
Therefore,
f (2a + 1) = (2a + 1)– 3(2a + 1) + 4
                = 4a2 + 1 + 4a – 6a – 3 + 4
                = 4a2 – 2a + 2
Now,
f (a) = f (2a + 1)
 a2 – 3a + 4 = 4a2 – 2a + 2
4a2 – a2 – 2a + 3a + 2 – 4 = 0
3a2 + a – 2 = 0
3a2 + 3a – 2a – 2 = 0
3x(a + 1) – 2(a +1) = 0
(3a – 2)(a +1) = 0
(a + 1) = 0  or  ( 3a – 2) = 0
a=−1 or a=23

Hence, a=−1, 23


If X = {2, 3}, Y = {4, 5}, Z = {5, 6}, find X × (Y  Z), X × (Y ∩ Z), (X × Y) (X × Z).

Hide | Show

જવાબ : Given:
X = {2, 3}, Y = {4, 5} and Z ={5, 6}
Also,
(Y  Z) = {4, 5, 6}
Thus, we have:
X × (Y  Z) = {(2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3,6)}
And,
(Y ∩ Z) = {5}
Thus, we have:
X × (Y ∩ Z) = {(2, 5), (3, 5)}
Now,
(X × Y) = {(2, 4), (2, 5), (3, 4), (3, 5)}
(X × Z) = {(2, 5), (2, 6), (3, 5), (3, 6)}
 (X × Y) (X × Z) = {(2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)}


If A = {1, 2, and 3}, B = {4}, C = {5}, then verify that:
A × (B  C) = (A × B) (A × C)

Hide | Show

જવાબ : Given:
A = {1, 2, 3}, B = {4} and C = {5}

A × (B 
 C) = (A × B) (A × C)
We have:
(B 
 C) = {4, 5}
LHS: A × (B 
 C)  = {(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)}
Now,
(A × B) = {(1, 4), (2, 4), (3, 4)}
And,
(A × C) = {(1, 5), (2, 5), (3, 5)}
RHS: (A × B)
(A × C) = {(1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5)}
LHS = RHS


If A = {1, 2, 3}, B = {4}, C = {5}, then verify that: A × (B ∩ C) = (A × B) ∩ (A × C)

Hide | Show

જવાબ : Given:
A = {1, 2, 3}, B = {4} and C = {5}

A × (B ∩ C) = (A × B) ∩ (A × C)
We have:
(B ∩ C)  = ϕ
LHS: A × (B ∩ C) = ϕ
And,
(A × B) = {(1, 4), (2, 4), (3, 4)}
(A × C) = {(1, 5), (2, 5), (3, 5)}
RHS: (A × B) ∩ (A × C) = ϕ

LHS = RHS


If A = {1, 2, and 3}, B = {4}, C = {5}, then verify that: A × (B − C) = (A × B) − (A × C)

Hide | Show

જવાબ : Given:
A = {1, 2, 3}, B = {4} and C = {5}
A × (B − C) = (A × B) − (A × C)
We have:
(B − C)  = ϕ
LHS: A × (B − C) =  ϕ
Now,
(A × B) = {(1, 4), (2, 4), (3, 4)}
And,
(A × C) = {(1, 5), (2, 5), (3, 5)}
RHS: (A × B) − (A × C) = ϕ
LHS = RHS


Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that:
A × C  B × D

Hide | Show

જવાબ : Given:
A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}
A × C 
 B × D
LHS: A × C = {(1, 5), (1, 6), (2, 5), (2, 6)}
RHS: B × D = {(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (3, 8), (4, 5), (4, 6), (4, 7), (4, 8)}

 A × C  B × D


Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that:
A × (B ∩ C) = (A × B) ∩ (A × C)

Hide | Show

જવાબ : Given:
A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}
A × (B ∩ C) = (A × B) ∩ (A × C)
We have:
(B ∩ C)  = ϕ
LHS: A × (B ∩ C) = ϕ
Now,
(A × B) = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4)}
(A × C) = {(1, 5), (1, 6), (2, 5), (2, 6)}
RHS: (A × B) ∩ (A × C) = ϕ
LHS = RHS


If R = [(x, y): x, y  W, 2x + y = 7], then write the domain and range of R.

Hide | Show

જવાબ : R = {(x, y): x, y  W, 2x + y = 7}

As y = 8−2x

For x = 0, y = 7

For x =1, y = 5

For x = 2, y = 3

For x = 3, y = 1

For x = 4, y <0

So, y <0 for all x>4  

Domain (R) = {0, 1, 2, 3} and Range (R) = {1, 3, 5, 7}


If R = [(x, y): x, y  W, x + y = 3], then write the domain and range of R.

Hide | Show

જવાબ : R = {(x, y): x, y  W, x + y = 3}

As y = 3−x

For x = 0, y = 3

For x =1, y = 2

For x = 2, y = 1

For x = 3, y = 0

For x = 4, y<0

So, y <0 for all x>4  

Domain (R) = {0, 1, 2, 3} and Range (R) = {0, 1, 2, 3}


If R = [(x, y): x, y  W, -x + y = 3], then write the domain and range of R.

Hide | Show

જવાબ : R = {(x, y): x, y  W, -x + y = 3}

As y = 3 - x

For x = 0, y = 3

For x =1, y = 2

For x = 2, y = 1

For x = 3, y = 0

For x = 4, y <0

So, y <0 for all x>4  

Domain (R) = {0, 1, 2, 3} and Range (R) = {0, 1, 2, 3}


If R = [(x, y): x, y  W, x + 2y = 7], then write the domain and range of R.

Hide | Show

જવાબ : R = {(x, y): x, y  W, x + 2y = 7}

As y = (7-x)/2

For x = 1, y = 3

For x =3, y = 2

For x = 5, y = 1

For x = 7, y = 0

For x = 8, y <0

Domain (R) = {0, 1, 3, 5, 7} and Range (R) = {0, 1, 2, 3}


If R = [(x, y): x, y  W, 2x - y = 3], then write the domain and range of R.

Hide | Show

જવાબ : R = {(x, y): x, y  W, 2x + y = 5}

As y = -2x+5

For x = 0, y = 5

For x =1, y = 3

For x = 2, y = 1

For x = 3, y = 0

For x = 4, y <0

So, y <0 for all x>4  

Domain (R) = {0, 1, 2, 3} and Range (R) = {0, 1, 3, 5}


Write the domain and range of the function f(x) =(x-2)/ (2-x).

Hide | Show

જવાબ : Given:
f(x)=(x-2)/(2-x)
Domain ( f ) :
Clearly,  f (x) is defined for all x satisfying: if 2 -x  ≠ 0  x ≠ 2.
Hence, domain ( f ) = R - {2}
Range of f :
Let f (x) = y
 (x-2)/(2-x)=y
 x - 2 = y (2 - x)
 x - 2 = - y (x - 2)
 y = - 1
Hence, range ( f ) = {- 1}


If f(x) = 4x − x2, x  R, then write the value of f (p + 1) −f (p − 1).

Hide | Show

જવાબ : Given:
f(x) =  4x − x2, x  R
Now,
f(p + 1) = 4(p + 1) - (p + 1)2
             = 4p + 4 - (p2 + 1 + 2p)
             = 4p + 4 - p2  - 1 – 2p
             = 2p - p2 + 3
f(p - 1) = 4(p - 1) - (p - 1)2
             = 4p - 4 - (p2 + 1 – 2p)
             = 4p - 4 - p2  - 1 + 2p
             = 6p - p2  - 5
Thus,
f(p + 1) − f(p − 1) = ( 2p - p2 + 3) - (6p - p2  - 5)
                             = 2p - p2 + 3 – 6p + p2 + 5
                             =  8 – 4p
                             = 4(2 - p)


There are No Content Availble For this Chapter

write the number of functions from  B to A

1

n(A) = 2 and n(B) = 3

A

9

2

n(A) = 3 and n(B) = 2

B

1

3

n(A) = 0 and n(B) = 1

C

8

Hide | Show

જવાબ :

1-C, 2-A, 3-B

write the number of functions from A to B

1

n(A) = 2 and n(B) = 3

A

1

2

n(A) = 3 and n(B) = 2

B

9

3

n(A) = 0 and n(B) = 1

C

8

Hide | Show

જવાબ :

1-B, 2-C, 3-A

the number of functions that can be defined from A into B

1

If A = {1, 2, 3, 4 } and B = {xy}

A

3

2

If A = {1, 2, 3} and B = {xy}

B

16

3

If A = {1, 2 } and B = {xy}

C

9

4

If A = {1, 2, 3} and B = { y}

D

4

Hide | Show

જવાબ :

​​​​​​​1-B, 2-C, 3-D, 4-A

1

If [x]2−5[x]+4=0, where [.] denotes the greatest integer function, then

A

[-10, -4)

2

If [x]2−8[x]+16=0, where [.] denotes the greatest integer function

B

[-2, -2)

3

If [x]2+5[x]+6=0, where [.] denotes the greatest integer function

C

[4, 5)

4

If [x]2+15[x]+50=0, where [.] denotes the greatest integer function

D

[1, 5)

Hide | Show

જવાબ :

1-D, 2-C, 3-B, 4-A

1

Real No.

A

{0,1,2,3…..}

2

Natural No.

B

{…..-2, -1, 0, 1, 2…..}

3

Whole No.

C

{1,2,3,4……}

4

Integers

D

[-,∞]

Hide | Show

જવાબ :

1-D, 2-C, 3-A, 4-B

1

The domain of definition of the function f(x) = 1/ |x-1|

A

R − {2}

2

The domain of definition of the function f(x) = x - 21

B

R − {1}

3

The domain of definition of the function f(x) = 1/ |x-2|

C

Hide | Show

જવાબ :

1-B, 2-C, 3-A

1

The domain of definition of the function f(x) = log |x|

A

R-{0}

2

The range of the function f(y) = |y − 1|

B

(−∞, 0)

3

The range of the function f(y) = - |y|

C

[0, ∞)

Hide | Show

જવાબ :

1-A, 2-C, 3-B

1

N

A

Real No.

2

W

B

Natural No.

3

Z

C

Whole No.

4

R

D

Integers

Hide | Show

જવાબ :

1-B, 2-C, 3-D, 4-A

If X = {1, 2, 4}, Y= {2, 4, 5}, Z = {2, 5}

1

Y+Z

A

X-Y

2

X+Z

B

Y

3

X-(Y+Z)

C

X

4

X+Y-Z

D

X+Y

Hide | Show

જવાબ :

1-B, 2-D, 3-A, 4-C

If X = {1, 2, 4}, Y= {2, 4, 5}, Z = {2, 5}

1

X-Y

A

{4}

2

Y-Z

B

{1,4}

3

X-Z

C

{1}

4

X+Y

D

{1,2,4,5}

Hide | Show

જવાબ :

1-C, 2-A, 3-B, 4-D

Download PDF

Take a Test

Choose your Test :

Relation and Function

-.

આ પ્રકરણને લગતા વિવિધ એનિમેશન વિડીયો, હેતુલક્ષી પ્રશ્નો, ટૂંકા પ્રશ્નો, લાંબા પ્રશ્નો, પરિક્ષામાં પુછાઈ ગયેલા પ્રશ્નો તેમજ પરિક્ષામાં પુછાઈ શકે તેવા અનેક મુદ્દાસર પ્રશ્નો જોવા અમારી વેબસાઈટ પર રજીસ્ટર થાઓ અથવા અમારી App ફ્રી માં ડાઉનલોડ કરો.

Browse & Download CBSE Books For Class 11 All Subjects

The GSEB Books for class 10 are designed as per the syllabus followed Gujarat Secondary and Higher Secondary Education Board provides key detailed, and a through solutions to all the questions relating to the GSEB textbooks.

The purpose is to provide help to the students with their homework, preparing for the examinations and personal learning. These books are very helpful for the preparation of examination.

For more details about the GSEB books for Class 10, you can access the PDF which is as in the above given links for the same.