# CBSE Solutions for Class 11 English

#### GSEB std 10 science solution for Gujarati check Subject Chapters Wise::

જવાબ : √3(1/3)7

Find the 9th term of the G.P. 1/(a3 x3), ax, a5 x5 , ...

જવાબ : a29x29

Find the 10th term of the G.P. 0.3, 0.06, 0.012, ...

જવાબ : 0.3(0.2)9

Find the 11th term of the G.P. −3/4, 1/2, −1/3, 2/9, ...

જવાબ : ½ (2/3)9

Find the 6th term of the G.P. 1, 4, 16, 64, ...

જવાબ : 1024

જવાબ : √3(1/3)8

Find the 10th term of the G.P. 1/(a3 x3), ax, a5 x5 , ...

જવાબ : a33x33

Find the 6th term of the G.P. 0.3, 0.06, 0.012, ...

જવાબ : 0.3(0.2)5

Find the 8th term of the G.P. −3/4, 1/2, −1/3, 2/9, ...

જવાબ : ½ (2/3)6

Find the 7th term of the G.P. 1, 4, 16, 64, ...

જવાબ : 4096

જવાબ : √3(1/3)9

Find the 11th term of the G.P. 1/(a3 x3), ax, a5 x5 , ...

જવાબ : a37x37

Find the 7th term of the G.P. 0.3, 0.06, 0.012, ...

જવાબ : 0.3(0.2)6

Find the 9th term of the G.P. −3/4, 1/2, −1/3, 2/9, ...

જવાબ : ½ (2/3)7

Find the 8th term of the G.P. 1, 4, 16, 64, ...

જવાબ : 16384

Find the 9th term from the end of the G.P. 2/27, 2/9, 2/3, ..., 162

જવાબ : 486

Find the 8th term from the end of the G.P. 2/27, 2/9, 2/3, ..., 162

જવાબ : 162

Find the 7th term from the end of the G.P. 2/27, 2/9, 2/3, ..., 162

જવાબ : 54

Find the 7th term from the end of the G.P. 2/27, 2/9, 2/3, ..., 162

જવાબ : 54

Find the 6th term from the end of the G.P. 2/27, 2/9, 2/3, ..., 162

જવાબ : 18

Find the 5th term from the end of the G.P. 2/27, 2/9, 2/3, ..., 162

જવાબ : 6

Find 11th term of the A.P. 1, 4, 7, 10, ....

જવાબ : 31

Find 12th term of the A.P. 1, 4, 7, 10, ...

જવાબ : 34

Find 13th term of the A.P. 1, 4, 7, 10,...

જવાબ : 37

Find 14th term of the A.P. 13, 8, 3, −2, ...

જવાબ : -52

Find 13th term of the A.P. 13, 8, 3, −2,...

જવાબ : -47

Find 12th term of the A.P. 13, 8, 3, −2, ...

જવાબ : -42

Find 11th term of the A.P. 13, 8, 3, −2, ...

જવાબ : -37

Find 10th term of the A.P. 13, 8, 3, −2, ...

જવાબ : -32

Find 14th term of the A.P. 1, 4, 7, 10,...

જવાબ : 40

Find 15th term of the A.P. 1, 4, 7, 10,...

જવાબ : 43

Find 16th term of the A.P. 1, 4, 7, 10,...

જવાબ : 46

Find 17th term of the A.P. 1, 4, 7, 10,...

જવાબ : 49

Find 18th term of the A.P. 1, 4, 7, 10,...

જવાબ : 52

Find 19th term of the A.P. 1, 4, 7, 10,...

જવાબ : 55

Find 20th term of the A.P. 1, 4, 7, 10,...

જવાબ : 58

Find 17th term of the A.P. √2, 3√2, 5√2,...

જવાબ : 33√2

Find 16th term of the A.P. √2, 3√2, 5√2,...

જવાબ : 31√2

Find 15th term of the A.P. √2, 3√2, 5√2,...

જવાબ : 29√2

Find 14th term of the A.P. √2, 3√2, 5√2,...

જવાબ : 27√2

Find 13th term of the A.P. √2, 3√2, 5√2,...

જવાબ : 25√2

Find 19th term of the A.P. √2, 3√2, 5√2,...

જવાબ : 37√2

Find 20th term of the A.P. √2, 3√2, 5√2,...

જવાબ : 39√2

Find 21th term of the A.P. √2, 3√2, 5√2,...

જવાબ : 41√2

Find 22th term of the A.P. √2, 3√2, 5√2,...

જવાબ : 43√2

Find 23th term of the A.P. √2, 3√2, 5√2,...

જવાબ : 45√2

Find 5th term of the A.P. 13, 8, 3, −2,...

જવાબ : -7

Find 6th term of the A.P. 13, 8, 3, −2,...

જવાબ : -12

Find 7th term of the A.P. 13, 8, 3, −2,...

જવાબ : -17

Find 8th term of the A.P. 13, 8, 3, −2,...

જવાબ : -22

Find 9th term of the A.P. 13, 8, 3, −2,...

જવાબ : -27

Which term of the G.P. :

1/3, 1/9, 1/27 ...is 1/729 ?

જવાબ : Here, first term, a=1/3 and common ratio, r=1/3

Let the nth term be 1/729.

∴ an =1/729

⇒ arn-1 = 1/729

⇒ (1/3)(1/3)n-1 = 1/729

⇒ (1/3)n-1 = 3/(3)6 = (1/3)5

⇒ n-1 = 5

n=6

Thus, the 6th term of the given G.P. is 1/729.

Which term of the G.P. :

√3, 3, 3√3, ... is 27√3 ?

જવાબ : Here, first term, a=√3 and common ratio, r=√3

Let the nth term be 27√3.

∴ an=27√3

⇒ arn-1 = 27√3

⇒ (√3)(√3)n-1 = 27√3

⇒ (√3)n-1 = (√3)6

n-1 = 6

n=7

Thus, the 7th term of the given G.P. is 27√3.

Which term of the G.P. :

1/3, 1/9, 1/27 ...is 1/2187 ?

જવાબ : Here, first term, a=1/3 and common ratio, r=1/3

Let the nth term be 1/2187.

∴ an =1/2187

⇒ arn-1 = 1/2187

⇒ (1/3)(1/3)n-1 = 1/2187

⇒ (1/3)n-1 = 3/(3)7 = (1/3)6

⇒ n-1 = 6

n=7

Thus, the 7th term of the given G.P. is 1/2187.

Which term of the G.P. :

√3, 3, 3√3, ... is 81√3 ?

જવાબ : Here, first term, a=√3 and common ratio, r=√3

Let the nth term be 81√3.

∴ an=81√3

⇒ arn-1 = 81√3

⇒ (√3)(√3)n-1 = 81√3

⇒ (√3)n-1 = (√3)8

n-1 = 8

n=9

Thus, the 9th term of the given G.P. is 81√3.

Which term of the G.P. :

2, 2√2, 4, ... is 64√2 ?

જવાબ : Here, first term, a=2 and common ratio, r=√2

Let the nth term be 64√2.

∴ an = 64√2

⇒ arn-1 = 64√2

⇒ (2)(√2)n-1 = 64√2

⇒2 (√2)n-1 = 64√2

⇒ (√2)n-1 = 32√2

⇒ (√2)n-1 = (√2)11

n-1 = 11

n = 12

Thus, the 12th term of the given G.P. is 64√2.

Which term of the G.P. :

√2,1/√2, 1/2√2 ,1/4√2, ... is 1/128√2?

જવાબ : Here, first term, a= √2  and common ratio, r=1/2

Let the nth term be 1/128√2.

∴ an = 1/128√2

⇒ arn-1 = 1/128√2

⇒ (√2)(1/2)n-1 = 1/128√2

⇒ (1/2)n-1 = 1/256

⇒ (1/2)n-1 = (1/2)8

n-1 = 8

n=9

Thus, the 9th term of the given G.P. is 1/128√2.

Which term of the G.P. :

1/3, 1/9, 1/27 ...is 1/6561 ?

જવાબ : Here, first term, a=1/3 and common ratio, r=1/3

Let the nth term be 1/6561.

∴ an =1/6561

⇒ arn-1 = 1/6561

⇒ (1/3)(1/3)n-1 = 1/6561

⇒ (1/3)n-1 = 3/(3)8 = (1/3)7

⇒ n-1 = 7

n=8

Thus, the 8th term of the given G.P. is 6561.

Which term of the G.P. :

√3, 3, 3√3, ... is 729√3 ?

જવાબ : Here, first term, a=√3 and common ratio, r=√3

Let the nth term be 729√3.

∴ an=729√3

⇒ arn-1 = 729√3

⇒ (√3)(√3)n-1 = 729√3

⇒ (√3)n-1 = (√3)12

n-1 = 12

n=13

Thus, the 13th term of the given G.P. is 729√3.

Which term of the G.P. :

2, 2√2, 4, ... is 128√2 ?

જવાબ : Here, first term, a=2 and common ratio, r=√2

Let the nth term be 128√2.

∴ an = 128√2

⇒ arn-1 = 128√2

⇒ (2)(√2)n-1 = 128√2

⇒2 (√2)n-1 = 128√2

⇒ (√2)n-1 = 64√2

⇒ (√2)n-1 = (√2)13

n-1 = 13

n = 14

Thus, the 14th term of the given G.P. is 128√2.

Which term of the G.P. :

√2,1/√2, 1/2√2 ,1/4√2, ... is 1/256√2?

જવાબ : Here, first term, a= √2  and common ratio, r=1/2

Let the nth term be 1/256√2.

∴ an = 1/256√2

⇒ arn-1 = 1/256√2

⇒ (√2)(1/2)n-1 = 1/256√2

⇒ (1/2)n-1 = 1/512

⇒ (1/2)n-1 = (1/2)9

n-1 = 9

n=10

Thus, the 10th term of the given G.P. is 1/256√2.

Which term of the A.P. 3, 8, 13, ... is 243?

જવાબ : 3, 8, 13...
Here, we have:
a = 3
d = (8-3)  =5
Let an = 243

⇒ a+(n-1)d = 243

⇒3+(n-1)5 = 243

⇒(n-1)5 =240

n-1 = 48

⇒ n= 49

Hence, 243 is the 49th term of the given A.P.

Which term of the A.P. 80, 76, ... is 0?

જવાબ : 84, 80, 76...
Here, we have:
a = 80
d = (76-80) = -4
Let an =0

a+(n-1)d = 0

⇒80 + (n-1)(-4) = 0

⇒ (n-1)(-4) = -80

⇒(n-1) = 20⇒ n = 21

Hence, 0 is the 21nd term of the given A.P.

Which term of the A.P. 4, 9, 14, ... is 249?

જવાબ : 4, 9, 14...
Here, we have:
a = 4
d = (9-4) = 5
Let an = 249

a+(n-1) d = 249

⇒4+(n-1) 5 = 249

⇒(n-1) 5 =245

⇒(n-1) = 49⇒ n= 50

Hence, 249 is the 50th term of the given A.P.

Which term of the A.P. 3, 8, 13, ... is 253?

જવાબ : 3, 8, 13...
Here, we have:
a = 3
d = (8-3)  =5
Let an = 253

⇒ a+(n-1)d = 253

⇒3+(n-1)5 = 253

⇒(n-1)5 =250

n-1 = 40

⇒ n= 51

Hence, 253 is the 51th term of the given A.P.

Which term of the A.P. 80, 76, ... is 4?

જવાબ : 84, 80, 76...
Here, we have:
a = 80
d = (76-80) = -4
Let an =4

a+(n-1)d = 4

⇒80 + (n-1)(-4) = 4

⇒ (n-1)(-4) = -76

⇒(n-1) = 19

⇒ n = 20

Hence, 4 is the 20th term of the given A.P.

Which term of the A.P. 4, 9, 14, ... is 259?

જવાબ : 4, 9, 14...
Here, we have:
a = 4
d = (9-4) = 5
Let an = 259

a+(n-1) d = 259

⇒4+(n-1) 5 = 259

⇒(n-1) 5 =255

⇒(n-1) = 51⇒ n= 52

Hence, 255 is the 52th term of the given A.P.

Is 67 a term of the A.P. 7, 10, 13, ...?

જવાબ : 7, 10, 13...
Here, we have:
a = 7
d = (10-7) = 3

Let an = 67

⇒ a+(n-1) d = 67

⇒7+(n-1)(3) = 67

⇒(n-1)(3) = 60

⇒(n-1) = 60/3

n =  20 +1 = 21

Since n is a natural number. So, 67 is a term of the given A.P.

Is 301 a term of the A.P. 3, 8, 13, ...?

જવાબ : 3, 8, 13...
Here, we have:
a  = 3
d = (8-3)=5

Let an = 301

⇒ a+(n-1)d = 301

⇒3+(n-1)5 = 301

⇒(n-1)5 =298

⇒(n-1) = 298/5

n = 298/5 + 1 = 303/5
Since n is not a natural number.So, 301 is not a term of the given A.P.

Is 69 a term of the A.P. 7, 10, 13, ...?

જવાબ : 7, 10, 13...
Here, we have:
a = 7
d = (10-7) = 3

Let an = 69

⇒ a+(n-1) d = 69

⇒7+(n-1)(3) = 69

⇒(n-1)(3) = 62

⇒(n-1) = 62/3

n =  62/3 +1 = 65/3

Since n is not a natural number. So, 69 is not a term of the given A.P.

Is 303 a term of the A.P. 3, 8, 13, ...?

જવાબ : 3, 8, 13...
Here, we have:
a  = 3
d = (8-3)=5

Let an = 303

a+(n-1)d = 303

3+(n-1)5 = 303

(n-1)5 =300

(n-1) = 300/5

n = 60 + 1 = 61
Since n is a natural number. So, 303 is a term of the given A.P.

### Take a Test

Choose your Test :

Math

### Browse & Download CBSE Books For Class 11 All Subjects

The GSEB Books for class 10 are designed as per the syllabus followed Gujarat Secondary and Higher Secondary Education Board provides key detailed, and a through solutions to all the questions relating to the GSEB textbooks.

The purpose is to provide help to the students with their homework, preparing for the examinations and personal learning. These books are very helpful for the preparation of examination.

For more details about the GSEB books for Class 10, you can access the PDF which is as in the above given links for the same.