જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ : Let α, β be the zeros of polynomial.
(i) We have, α + β = −14 and αβ = 14
Thus, polynomial is
p(x) = x2 – (a + B) x + aß
જવાબ : Let α, β, γ be the roots of the given polynomial and αβ = 3
Then αβγ = −92
⇒ 3 x γ = −92 or γ = −32
જવાબ : Let α, β, γ be the roots of the given polynomial and α = 0.
Then αβ + βγ + γα = c/a ⇒ βγ = c/a
જવાબ : Here, α + β = -1, αβ = -1,
So 1α+1β=β+ααβ=−1−1=1
જવાબ : Here, α + β = 5, αβ = 6
= α + β – 3αβ = 5 – 3 x 6 = -13
જવાબ : Put x = 1 in p(x)
∴ p(1) = a(1)2 – 3(a – 1) x 1 – 1 = 0
⇒ a – 3a + 3 – 1 = 0 ⇒ 2a = -2 ⇒ a = 1
જવાબ : Since – 3 is a zero of the given polynomial
∴ (k – 1)(-3)2 + k(-3) + 1 = 0 :
⇒ 9k – 9 – 3k + 1 = 0 ⇒ k = 4/3.
જવાબ : p(x) = 4x2 – 12x + 9 = (2x – 3)2
For zeros, p(x) = 0
⇒ (2x – 3)(2x – 3) = 0 ⇒ x = 32,32
જવાબ :
જવાબ : No, as degree (x – 2) = degree (x + 3)
જવાબ : Sum of zeros = -3 + 4 = 1,
Product of zeros = – 3 x 4 = -12
∴ Required polynomial = x2 – x – 12
જવાબ : Let α,6 be the zeros of given polynomial.
Then α + 6 = 5 3 ⇒ α = -1
જવાબ : Let α and -α be the roots of given polynomial.
Then α + (-α) = 0 ⇒ −ba=0 ⇒ b = 0.
જવાબ : Let f(x) = x2 – 5x + 4
Then f(3) = 32 – 5 x 3 + 4 = -2
For f(3) = 0, 2 must be added to f(x).
જવાબ : No, for equal zeros, k = 0,4 ⇒ k should be even.
જવાબ : Yes, because −ba = sum of zeros < 0, so that ba=0 > 0. Also the product of the zeros = ca=0 > 0.
જવાબ : No, x4 – 1 is a polynomial intersecting the x-axis at exactly two points.
જવાબ : Let one root of the given polynomial be α.
Then the other root = -α
Sum of the roots = (-α) + α = 0
⇒ −ba = 0 or −8k4 = 0 or k = 0
જવાબ : Yes, because every quadratic polynomial has at the most two zeros.
જવાબ : Since the quotient is zero, therefore
deg p(x) < deg g(x)
જવાબ : 0, ax2 + bx + C.
જવાબ : In case of division of a polynomial by another polynomial, the degree of the remainder (polynomial) is always less than that of the divisor. (x – 2) cannot be the remainder when p(x) is divided by (2x + 3) as the degree is the same.
જવાબ : Quadratic polynomial is
x2 – (Sum of zeroes) x + (Product of zeroes)
= x2 – (0)x + (-√2)
= x2 – √2
જવાબ : Let α and 1α be the zeroes of P(x).
P(a) = ax2 + bx + c …(given)
Product of zeroes = ca
⇒ α × 1α = ca
⇒ 1 = ca
⇒ a = c (Required condition)
Coefficient of x2 = Constant term
જવાબ : Sum of zeroes,
S = (3 + √2) + (3 – √2) = 6
Product of zeroes,
P = (3 + √2) x (3 – √2) = (3)2 – (√2)2 = 9 – 2 = 7
Quadratic polynomial = x2 – Sx + P = x2 – 6x + 7
જવાબ : Quadratic polynomial is x2 – Sx + P = 0
⇒ x2 – (-6)x + 5 = 0
⇒ x2 + 6x + 5 = 0
જવાબ : x2 + 9x + 20 is the required polynomial.
જવાબ : Sum of zeroes, (S) = √3
Product of zeroes, (P) = 1√3
Quadratic polynomial = x2 – Sx + P
જવાબ : p(x) = (k2 – 14) x2 – 2x – 12
Here a = k2 – 14, b = -2, c = -12
Sum of the zeroes, (α + β) = 1 …[Given]
⇒ −ba = 1
⇒ −(−2)k2−14 = 1
⇒ k2 – 14 = 2
⇒ k2 = 16
⇒ k = ±4
જવાબ : Here a = 3, b = -k, c = 6
Sum of the zeroes, (α + β) = −ba = 3 …..(given)
⇒ −(−k)3 = 3
⇒ k = 9
જવાબ :
જવાબ :
જવાબ :
જવાબ : We have, 2x2 – 5x – 3 = 0
= 2x2 – 6x + x – 3
= 2x(x – 3) + 1(x – 3)
= (x – 3) (2x + 1)
Zeroes are:
x – 3 = 0 or 2x + 1 = 0
⇒ x = 3 or x = −12
Since the zeroes of required polynomial is double of given polynomial.
Zeroes of the required polynomial are:
3 × 2, (−12 × 2), i.e., 6, -1
Sum of zeroes, S = 6 + (-1) = 5
Product of zeroes, P = 6 × (-1) = -6
Quadratic polynomial is x2 – Sx + P
⇒ x2 – 5x – 6 … (i)
Comparing (i) with x2 + px + q
p = -5, q = -6
જવાબ :
જવાબ : p(x) = 2x2 – x – 6 …[Given]
= 2x2 – 4x + 3x – 6
= 2x (x – 2) + 3 (x – 2)
= (x – 2) (2x + 3)
Zeroes are:
x – 2 = 0 or 2x + 3 = 0
x = 2 or x = −32
Verification:
Here a = 2, b = -1, c = -6
જવાબ : We have, 3x2 – 75
= 3(x2 – 25)
= 3(x2 – 52)
= 3(x – 5)(x + 5)
Zeroes are:
x – 5 = 0 or x + 5 = 0
x = 5 or x = -5
Verification:
Here a = 3, b = 0, c = -75
Sum of the zeroes = 5 + (-5) = 0
જવાબ : Sum of zeroes, S = (-2) + (-5) = -7
Product of zeroes, P = (-2)(-5) = 10
Quadratic polynomial is x2 – Sx + P = 0
= x2 – (-7)x + 10
= x2 + 7x + 10
Verification:
Here a = 1, b = 7, c = 10
Sum of zeroes = (-2) + (-5) = 7
જવાબ :
જવાબ :
જવાબ : p(x) = 2x3 – 11x2 + 17x – 6
When x = 2,
p(2) = 2(2)3 – 11(2)2 + 17(2) – 6 = 16 – 44 + 34 – 6 = 0
When x = 3, p(3) = 2(3)3 – 11(3)2 + 17(3) – 6 = 54 – 99 + 51 – 6 = 0
Yes, x = 2, 3 and 12 all are the zeroes of the given polynomial.
જવાબ : Let Sum of zeroes (α + β) = S = -8 …[Given]
Product of zeroes (αβ) = P = 12 …[Given]
Quadratic polynomial is x2 – Sx + P
= x2 – (-8)x + 12
= x2 + 8x + 12
= x2 + 6x + 2x + 12
= x(x + 6) + 2(x + 6)
= (x + 2)(x + 6)
Zeroes are:
x + 2 = 0 or x + 6 = 0
x = -2 or x = -6
જવાબ : Quadratic polynomial = x2 – (Sum)x + Product
જવાબ : We have, 6x2 – 3 – 7x
= 6x2 – 7x – 3
= 6x2 – 9x + 2x – 3
= 3x(2x – 3) + 1(2x – 3)
= (2x – 3) (3x + 1)
જવાબ : p(x) = x2 – 3x – 28
= x2 – 7x + 4x – 28
= x(x – 7) + 4(x – 7)
= (x – 7) (x + 4)
Zeroes are:
x – 7 = 0 or x + 4 = 0
x = 7 or x = -4
જવાબ : Given: 6y2 – 7y + 2
Here a = 6, b = -7, c = 2
જવાબ :
Quotient = 3x – 1
Remainder = 1
Verification:
Divisor × Quotient + Remainder
= (x + 2) × (3x – 1) + 1
= 3x2 – x + 6x – 2 + 1
= 3x2 + 5x – 1
= Dividend
જવાબ : Let P(x) = x3 – 8x2 + 19x – 12
Put x = 1
P(1) = (1)3 – 8(1)2 + 19(1) – 12
= 1 – 8 + 19 – 12
= 20 – 20
= 0
Remainder = 0
(x – 1) is a factor of P(x).
Verification:
જવાબ : Let 3x3 + 4x2 + 5x – 13 = P(x)
q(x) = 3x + 10, r(x) = 16x – 43 …[Given]
As we know, P(x) = g(x) . q(x) + r(x)
3x3 + 4x2 + 5x – 13 = g(x) . (3x + 10) + (16x – 43)
3x3 + 4x2 + 5x – 13 – 16x + 43 = g(x) . (3x + 10)
જવાબ : Let P(x) = x3 – 3√5 x2 – 5x + 15√5
x – √5 is a factor of the given polynomial.
Put x = -√5,
જવાબ :
Quotient = 2x – 2જવાબ : Since two zeroes are -2 and -3.
(x + 2)(x + 3) = x2 + 3x + 2x + 6 = x2 + 5x + 6
Dividing the given equation with x2 + 5x + 6, we get
જવાબ :
જવાબ : p(x) = x3 – 2x2 + kx + 5,
When x – 2,
p(2) = (2)3 – 2(2)2 + k(2) + 5
⇒ 11 = 8 – 8 + 2k + 5
⇒ 11 – 5 = 2k
⇒ 6 = 2k
⇒ k = 3
Let q(x) = x3 + kx2 + 3x + 1
= x3 + 3x2 + 3x + 1
= x3 + 1 + 3x2 + 3x
= (x)3 + (1)3 + 3x(x + 1)
= (x + 1)3
= (x + 1) (x + 1) (x + 1) …[∵ a3 + b3 + 3ab (a + b) = (a + b)3]
All zeroes are:
x + 1 = 0 ⇒ x = -1
x + 1 = 0 ⇒ x = -1
x + 1 = 0 ⇒ x = -1
Hence zeroes are -1, -1 and -1.
જવાબ : We have, p(x) = kx2 + 4x + 4
Here a = k, b = 4, c = 4
⇒ 24k2 = 16 – 8k
⇒ 24k2 + 8k – 16 = 0
⇒ 3k2 + k – 2 = 0 …[Dividing both sides by 8]
⇒ 3k2 + 3k – 2k – 2 = 0
⇒ 3k(k + 1) – 2(k + 1) = 0
⇒ (k + 1)(3k – 2) = 0
⇒ k + 1 = 0 or 3k – 2 = 0
⇒ k = -1 or k = 23
જવાબ : Given polynomial is p(x) = 2x2 + 5x + k
Here a = 2, b = 5, c = k
જવાબ :
Polynomial to be subtracted by (15x – 14).જવાબ :
જવાબ :
જવાબ :
જવાબ :
Remainder = 2x + 3
px + q = 2x + 3
p = 2 and q = 3.
જવાબ :
જવાબ :
If x4 + x3 + 8x2 + ax – b is divisible by x2 + 1
Remainder = 0
(a – 1)x – b – 7 = 0
(a – 1)x + (-b – 7) = 0 . x + 0
a – 1 = 0, -b – 7 = 0
a = 1, b = -7
a = 1, b = -7
gseb maths textbook std 10
The GSEB Books for class 10 are designed as per the syllabus followed Gujarat Secondary and Higher Secondary Education Board provides key detailed, and a through solutions to all the questions relating to the GSEB textbooks.
The purpose is to provide help to the students with their homework, preparing for the examinations and personal learning. These books are very helpful for the preparation of examination.
For more details about the GSEB books for Class 10, you can access the PDF which is as in the above given links for the same.