જવાબ :
જવાબ : ∆ABC – ∆DEF …[Given
જવાબ :
જવાબ : Let BD = x cm
then BW = (24 – x) cm, AE = 12 – 4 = 8 cm
In ∆DEW, AB || EW
જવાબ : In ∆ABC, DE || BC …[Given
x(x + 5) = (x + 3)(x + 1)
x2 + 5x = x2 + 3x + x + 3
x2 + 5x – x2 – 3x – x = 3
∴ x = 3 cm
જવાબ : In ∆ADE and ∆ABC,
∠DAE = ∠BAC …Common
∠ADE – ∠ABC … [Corresponding angles
∆ADE – ∆ΑΒC …[AA corollary
જવાબ : Let YR = x
PQXQ=PRYR … [Thales’ theorem
જવાબ : Altitude of an equilateral ∆,
જવાબ : AB = 3DE and AC = 3DF
…[∵ The ratio of the areas of two similar ∆s is equal to the ratio of the squares of their corresponding sides
જવાબ :
જવાબ : BE = BC – EC = 10 – 2 = 8 cm
Let AF = x cm, then BF = (13 – x) cm
In ∆ABC, EF || AC … [Given
જવાબ : Since the perimeters and two sides are proportional
∴ The third side is proportional to the corresponding third side.
i.e., The two triangles will be similar by SSS criterion.
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ : Here, 122+ 162 = 144 + 256 = 400 ≠ 182
∴ The given triangle is not a right triangle.
જવાબ : Şince, ∠R = 180° – (∠P + ∠Q)
= 180° – (55° + 25°) = 100° = ∠M
∠Q = ∠S = 25° (Given)
∆QPR ~ ∆STM
i.e., . ∆QPR is not similar to ∆TSM.
જવાબ : Since ∆ABC ~ ∆DEF
∴ ∠A = ∠D = 47°
∠B = ∠E = 63°
∴ ∠C = 180° – (∠A + ∠B) = 180° – (47° + 63°) = 70°
∴ Given statement is true.
જવાબ :
જવાબ : ∆ABC is right-angled at C.
∴ AB2 = AC2 + BC2 [By Pythagoras theorem]
⇒ AB2 = AC2 + AC2
[∵ AC = BC]
⇒ AB2 = 2AC2
જવાબ : (i) Let a = 7 cm, b = 24 cm and c = 25 cm.
Here, largest side, c = 25 cm
We have, a2 + b2 = (7)2 + (24)2 = 49 + 576 = 625 = c2 [∵c = 25]
So, the triangle is a right triangle.
Hence, c is the hypotenuse of right triangle.
(ii) Let a = 3 cm, b = 8 cm and c = 6 cm
Here, largest side, b = 8 cm
We have, a2 + c2 = (3)2 + (6)2 = 9 + 36 = 45 ≠ b2
So, the triangle is not a right triangle.
જવાબ : ∆ABC ~ ∆DEF (Given)
જવાબ : ∵ Ratio of perimeter of 2 ∆’s = 4 : 25
∵ Ratio of corresponding sides of the two ∆’s = 4 : 25
Now, the ratio of area of 2 ∆’s = Ratio of square of its corresponding sides.
= (4)2(25)2 = 16625
જવાબ :
AB2 = 2AC2 (Given)
AB2 = AC2 + AC2
AB2 = AC2 + BC2 (∵ AC = BC)
Hence AB is the hypotenuse and ∆ABC is a right angle A.
So, ∠C = 90°
જવાબ : ∵ The diagonals of rhombus bisect each other at 90°.
∴ In the right angle ∆BOC
BO = 8 cm
CO = 6 cm
∴ By Pythagoras Theorem
BC2 = BO2 + CO2 = 64 + 36
BC2 = 100
BC = 10 cm
જવાબ :
By Pythagoras Theorem
AC2 = AB2 + BC2 = (24)2 + (10)2
AC2 = 676
AC = 26 m
∴ The man is 26 m away from the starting point.
જવાબ : Since ∆ABC ~ ∆DEF.
જવાબ : Since ∆ABC ~ ∆PQR
જવાબ :
In ∆ABC, we have
DE || BC,
∴ ADDB = AEEC [By Basic Proportionality Theorem]
⇒ xx−2 = x+2x−1
⇒ x(x – 1) = (x – 2) (x + 2)
⇒ x2 – x = x2 – 4
⇒ x = 4
જવાબ :
We have, PQ = 1.28 cm, PR = 2.56 cm
PE = 0.18 cm, PF = 0.36 cm
Now, EQ = PQ-PE = 1.28 – 0.18 = 1.10 cm and
FR = PR – PF = 2.56 – 0.36 = 2.20 cm
Therefore, EF || QR [By the converse of Basic Proportionality Theorem]
જવાબ :
In ∆ABC, we have
DE || BC,
∴ ADDB = AEEC [By Basic Proportionality Theorem]
⇒ xx−2 = x+2x−1
⇒ x(x – 1) = (x – 2) (x + 2)
⇒ x2 – x = x2 – 4
⇒ x = 4
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ : Given: ∆ABC in which AB = AC and D is a point on the side AC such that BC2 = AC × CD
To prove: BD = BC
Construction: Join BD
જવાબ : Given: A triangle ABC in which AC2 = AB2 + BC2
To Prove: ∠B = 90°.
Construction: We construct a ∆PQR right-angled at Q such that PQ = AB and QR = BC
Proof: Now, from ∆PQR, we have,
જવાબ :
Given: A right triangle ABC right-angled at B.
To Prove: AC2 = AB2 + BC2
Construction: Draw BD ⊥ AC
Proof: In ∆ADB and ∆ABC
∠A = ∠A (Common)
∠ADB = ∠ABC (Both 90°)
∴ ∆ADB ~ ∆ABC (AA similarity criterion)
Adding (i) and (ii), we get
AD. AC + CD . AC = AB2 + BC2
or, AC (AD + CD) = AB2 + BC2
or, AC . AC = AB2 + BC2
or, AC2 = AB2 +BC2
જવાબ : In ∆EDC and ∆EBA we have
∠1 = ∠2 [Alternate angles]
∠3 = ∠4 [Alternate angles]
∠CED = ∠AEB [Vertically opposite angles]
∴ ∆EDC ~ ∆EBA [By AA criterion of similarity]
જવાબ :
જવાબ : Given: ABCD is a trapezium, in which AB || DC and its diagonals intersect each other at point O.
gseb maths textbook std 10
The GSEB Books for class 10 are designed as per the syllabus followed Gujarat Secondary and Higher Secondary Education Board provides key detailed, and a through solutions to all the questions relating to the GSEB textbooks.
The purpose is to provide help to the students with their homework, preparing for the examinations and personal learning. These books are very helpful for the preparation of examination.
For more details about the GSEB books for Class 10, you can access the PDF which is as in the above given links for the same.