જવાબ : {13, 22, 31, 40}
જવાબ : {2, 5}
જવાબ : {1,2}
જવાબ : { -1, 0, 1}
જવાબ : False
જવાબ : False
જવાબ : True
જવાબ : True
જવાબ : False
જવાબ : True
જવાબ : False
જવાબ : True
જવાબ : True
જવાબ : False
જવાબ : False
જવાબ : False
જવાબ : False
જવાબ : False
જવાબ : False
જવાબ : False
જવાબ : False
જવાબ : False
જવાબ : False
જવાબ : False
જવાબ : True
જવાબ : False
જવાબ : True
જવાબ : False
જવાબ : False
જવાબ : True
જવાબ : True
જવાબ : True
જવાબ : False
જવાબ : False
જવાબ : True
જવાબ : False
જવાબ : True
જવાબ : False
જવાબ : {1, 2, 3, 5, 7}
જવાબ : 17
જવાબ : 373
જવાબ : 738
જવાબ : 4
જવાબ : Finite
જવાબ : 142
જવાબ : 130
જવાબ : 12
જવાબ : 220
જવાબ : 208
જવાબ : 779
જવાબ : False.
Let M∈P(X)∪P(Z) ⇒ M∈P(X) or M∈P(Z) ⇒M⊂X or M⊂Z ⇒M⊂(X∪Z) ⇒M∈P(X∩Z) ∴P(X)∪P(Z) ⊂P(X∪Z) ...(1) Again, let M∈P(X∪Z)But M∉P(X) or M∉P(Z) [For example let X={2,5} and Z={1,3,4} and take M={1,2,3,4}]So, M∉P(X)∪P(Z)Thus, P(X∪Z) is not necessarily a subset of P(X)∪P(Z). Question 20: Show that for any sets X and Z,જવાબ :
⇒a∈U⇒a∈X'∪Z (∵ U=X'∪Z)⇒a∈Z (∵a∉X')Hence, X⊂Z.
⇒a∉X'⇒a∉Z' (∵Z'⊂X')
⇒a∈Z
Hence, X⊂Z.
જવાબ : LHS=(X∪Z)∪(X∩Z')
⇒LHS={(X∪Z)∩X}∪{(X∪Z)∩Z'} ⇒LHS={(X∪Z)∩X}∪{(X∪Z)∩Z'} ⇒LHS=X∪{(X∪Z)∩Z'} ⇒LHS=X∪{(X∩Z')∪(Z∩Z')} (∵ B∩B=ϕ) ⇒LHS=X∪(X∩Z') ⇒LHS=A=RHSજવાબ : (i) ( X−Z) and ( X∩Z)
Let a∈X−Z⇒a∈X and a∉Z ⇒a∉X∩Z Hence, (X−Z) and X∩Z are disjoint sets. (ii) ( Z−X) and ( X∩Z) Let a∈Z−X ⇒a∈Z and a∉X⇒a∉X∩Z Hence, (Z−X) and X∩Z are disjoint sets. (iii) (X−Z) and (Z−X) (X−Z)={x:x∈X and x∉Z} (Z−X)={x:x∈Z and x∉X} Hence, (X−Z) and (Z−X) are disjoint sets.જવાબ : Let a∈X⇒a∉Z (∵X∩Z=ϕ)
⇒a∈Z'
Thus, a∈X and a∈Z' ⇒ X⊆Z'
જવાબ : Let us consider the following sets,
X = {5, 6, 10 }
Y = {6,8,9}
Z = {9,10,11}
Clearly, X∩B={6} Y∩Z={9}, X∩Z={10} and X∩Y∩Z = ϕ It means that, X∩Y, Y∩Z and X∩Z are non empty sets and X∩Y∩Z = ϕ
જવાબ : (i)
LHS = X∪(X∩Z)⇒LHS=(X∪X)∩(X∪Z)
જવાબ : (i) Let X = {2, 4, 5, 6}, Y = {6, 7, 8, 9} and Z = {6, 10, 11, 12,13}
So, X∩Y={6} and X∩Z={6}Hence, X∩Y=X∩Z but Y≠Z
(ii)
Let a∈Z−Y ...(1)
જવાબ : We have that the following statements are equivalent:
(i) X⊂Z
(ii) X−Z=ϕ
(iii) X∪Z=Z
(iv) X∩Z=X
Proof:
Let X⊂Z
જવાબ : (i) For all x ∈ Y
⇒ x ∈ X or x ∈ Y
⇒ x ∈ X ∪ Y (Definition of union of sets)
⇒ Y ⊂ X ∪ Y
(ii) For all x ∈ X ∩ Y
⇒ x ∈ X and x ∈ Y (Definition of intersection of sets)
⇒ x ∈ X
⇒ X ∩ Y ⊂ X
(iii) Let X ⊂ Y. We need to prove X ∩ Y = X.
For all x ∈ X
⇒ x ∈ X and x ∈ Y (X ⊂ Y)
⇒ x ∈ X ∩ Y
⇒ X ⊂ X ∩ Y
Also, X ∩ Y ⊂ X
Thus, X ⊂ X ∩ Y and X ∩ Y ⊂ X
⇒ X ∩ Y = X [Proved in (ii)]
∴ X ⊂ Y ⇒ X ∩ Y = X
જવાબ : Given:
U = {2, 3, 5, 7, 9}
X = {3, 7}
Y = {2, 5, 7, 9}
To prove :
(i) (X∪Y)'=X'∩Y'
(ii) (X∩Y)'=X'∪Y'
Proof :
(i) LHS:
(X∪Y)={2,3,5,7,9} (X∪Y)'=ϕ
RHS:
X'={2,5,9} Y'={3} X'∩Y'=ϕ
જવાબ : Given:
X = {1, 2, 4, 5}, Y = {2, 3, 5, 6} and Z = {4, 5, 6, 7}
We have to verify the following identities:
(i) X∪(B∩C)=(X∪B)∩(A∪C)
LHS
(Y∩C)={5,6} X∪(Y∩C)={1,2,4,5,6}
RHS
(X∪Y)={1,2,3,4,5,6} (X∪Z)={1,2,4,5,6,7} (X∪Y)∩(X∪Z)={1,2,4,5,6}
LHS = RHS
∴ X∪(B∩C)=(X∪B)∩(X∪C)
(ii) A∩(B∪C)=(A∩B)∪(A∩C)
LHS
(B∪C)={2,3,4,5,6,7}A∩(B∪C)={2,4,5}
RHS
A∩B={2,5}A∩C={4,5}(A∩B)∪(A∩C)={2,4,5}
LHS = RHS
∴ A∩(B∪C)=(A∩B)∪(A∩C)
(iii) A∩(B−C)=(A∩B)−(A∩C)
LHS
(B−C) ={2,3}A∩(B−C)={2}
RHS
(A∩B)={2,5}(A∩C)={4,5}(A∩B)−(A∩C)={2}
LHS = RHS
∴ A∩(B−C)=(A∩B)−(A∩C)
(iv) A−(B∪C)=(A−B)∩(A−C)
LHS
(B∪C)={2,3,4,5,6,7}A−(B∪C)={1}
RHS
(A−B)={1,4}(A−C)={1,2}(A−B)∩(A−C)={1}
LHS = RHS
∴ A−(B∪C)=(A−B)∩(A−C)
(v) A−(B∩C)=(A−B)∪(A−C)
LHS
(B∩C)={5,6}A−(B∩C)={1,2,4}
RHS
(A−B)={1,4}(A−C)={1,2}(A−B)∪(A−C)={1,2,4}
LHS = RHS
∴ A−(B∩C)=(A−B)∪(A−C)
(vi) A∩(BΔC)=(A∩B)Δ(A∩C)
LHS
(BΔC)=(B−C)∪(C−B)(B−C)={2,3} (C−B)={4,7} (B−C)∪(C−B)={2,3,4,7}
જવાબ : We have to find the smallest set X such that X∪{1, 2}={1, 2, 3, 5, 9}.
The union of the two sets X & Y is the set of all those elements that belong to X or to Y or to both X & Y.
Thus, X must be {3, 5, 9}.
જવાબ : Given:
U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, P = {2, 4, 6, 8} and Q = {2, 3, 5, 7}
We have to verify:
(i) (P∪Q)'=P'∩Q'
LHS
P∪Q ={2,3,4,5,6,7,8} (P∪B )'={1,9}
RHS
P'={1,3,5,7,9} Q'={1,4,6,8,9} P'∩Q'={1,9}
LHS = RHS
Hence proved.
(ii) (P∩Q)'=P'∪Q'
LHS
P∩Q={2} (P∩Q)'={1,3,4,5,6,7,8,9}
RHS
P'={1,3,5,7,9} Q'={1,4,6,8,9} P'∪Q'={1,3,4,5,6,7,8,9}
LHS = RHS
Hence proved.
જવાબ : Given:
U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, P = {1, 2, 3, 4}, Q= {2, 4, 6, 8} and R = {3, 4, 5, 6}
(i) P' = {5, 6, 7, 8, 9}
(ii) Q' = {1, 3, 5, 7, 9}
(iii) (P∩R)' = {1, 2, 5, 6, 7, 8, 9}
(iv) (P∪Q)' = {5, 7, 9}
(v) (P')' = {1, 2, 3, 4} = A
(vi) (Q−R)' = {1, 3, 4, 5, 6, 7, 9}
જવાબ : Given:
P = {3, 6, 12, 15, 18, 21}, Q = {4, 8, 12, 16, 20}, R = {2, 4, 6, 8, 10, 12, 14, 16} and S = {5, 10, 15, 20}
(i) P−Q = {3, 6, 15, 18, 21}
(ii) P−R = {3, 15, 18, 21}
(iii) P−S = {3, 6, 12, 18, 21}
(iv) Q−P = {4, 8, 16, 20}
(v) R−P = {2, 4, 8, 10, 14, 16}
(vi) S−P = {5, 10, 20}
(vii) Q−R = {20}
(viii) Q−S = {4, 8, 12, 16}
જવાબ : P={x:x∈N}={1,2,3,...} Q={x:x−2n, n∈N}={2,4,6,8,...} R={x:x=2n−1, n∈N}={1,3,5,7,...} S = {x:x is a prime natural number.} = {2, 3, 5, 7,...}
(i) P∩Q = Q
(ii) P∩R = R
(iii) P∩S = S
(iv) B∩R = ϕ
(v) B∩S = {2}
(vi) R∩S = S−{2}
જવાબ : Given:
P = {1, 2, 3, 4, 5}, Q = {4, 5, 6, 7, 8}, R = {7, 8, 9, 10, 11} and S = {10, 11, 12, 13, 14}
(i) P∪Q = {1, 2, 3, 4, 5, 6, 7, 8}
(ii) P∪R = {1, 2, 3, 4, 5, 7, 8, 9, 10, 11}
(iii) Q∪R = {4, 5, 6, 7, 8, 9, 10, 11}
(iv) Q∪S = {4, 5, 6, 7, 8, 10, 11, 12, 13, 14}
(v) P∪Q∪R = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
(vi) P∪Q∪S = {1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14}
(vii) Q∪R∪S = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
(viii) P∩(Q∪R) = {4, 5}
(ix) (P∩Q)∩(Q∩R) = ϕ
(x) (P∪S)∩(Q∪R) = {4, 5, 10, 11}
જવાબ : From the Venn diagrams given below, we can clearly say that if X and Y are two sets such that X⊂Y, then
(i) Form the given Venn diagram, we can see that X∩Y = X
(ii) Form the given Venn diagram, we can see that X∪Y = Y
Let P = {3, 6, 12, 15, 18, 21}, Q = {4, 8, 12, 16, 20}, R = {2, 4, 6, 8, 10, 12, 14, 16} and S = {5, 10, 15, 20}. Find:
1 |
Q−R |
A |
{4, 8, 12, 16} |
2 |
Q−S |
B |
{5, 10, 20} |
3 |
S - P |
C |
{20} |
જવાબ :
1-C, 2-A, 3-B
Let P = {3, 6, 12, 15, 18, 21}, Q = {4, 8, 12, 16, 20}, R = {2, 4, 6, 8, 10, 12, 14, 16} and S = {5, 10, 15, 20}. Find:
1 |
Q−P |
A |
{5, 10, 20} |
2 |
R−P |
B |
{4, 8, 16, 20} |
3 |
S−P |
C |
{2, 4, 8, 10, 14, 16} |
જવાબ :
1-B, 2-C, 3-A
Let P = {3, 6, 12, 15, 18, 21}, Q = {4, 8, 12, 16, 20}, R = {2, 4, 6, 8, 10, 12, 14, 16} and S = {5, 10, 15, 20}. Find:
1 |
P−Q |
A |
{4, 8, 16, 20} |
2 |
P−R |
B |
{3, 6, 15, 18, 21} |
3 |
P−S |
C |
{3, 15, 18, 21} |
4 |
Q-P |
D |
{3, 6, 12, 18, 21} |
જવાબ :
1-B, 2-C, 3-D, 4-A
If P = {1, 2, 3, 4, 5}, Q = {4, 5, 6, 7, 8}, R = {7, 8, 9, 10, 11} and S = {10, 11, 12, 13, 14}, find:
1 |
Q∪R∪S |
A |
{4, 5, 10, 11} |
2 |
P∩Q∪R |
B |
ϕ |
3 |
(P∩Q)∩(Q∩R) |
C |
{4, 5} |
4 |
(P∪S)∩(Q∪R) |
D |
{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} |
જવાબ :
1-D, 2-C, 3-B, 4-A
1 |
E = {0}; |
A |
{x:x=2n, n∈N} |
2 |
{1, 4, 9, 16, ..., 100} |
B |
{5n:n∈N, 1≤n≤4} |
3 |
{2, 4, 6, 8 .....} |
C |
{x2:x∈N, 1≤n≤10} |
4 |
{5, 25, 125 625} |
D |
{x:x=0} |
જવાબ :
1-D, 2-C, 3-A, 4-B
If P = {1, 2, 3, 4, 5}, Q = {4, 5, 6, 7, 8}, R = {7, 8, 9, 10, 11} and S = {10, 11, 12, 13, 14}, find:
1 |
Q∪S |
A |
{1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14} |
2 |
P∪Q∪R |
B |
{4, 5, 6, 7, 8, 10, 11, 12, 13, 14} |
3 |
P∪Q∪S |
C |
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} |
જવાબ :
1-B, 2-C, 3-A
sets in Roster form
1 |
{x ∈ R : x > x}. |
A |
{17, 26, 35, 44, 53, 62, 71, 80} |
2 |
{x : x is a prime number which is a divisor of 60} |
B |
Φ |
3 |
{x : x is a two digit number such that the sum of its digits is 8} |
C |
{T, R, I, G, O, N, M, E, Y} |
4 |
The set of all letters in the word 'Trigonometry' |
D |
{2, 3, 5} |
જવાબ :
1-B, 2-D, 3-A, 4-C
sets in Roster form
1 |
{x : x is a letter before e in the English alphabet} |
A |
{1, 2, 3, 4} |
2 |
{x ∈ N : x2 < 25} |
B |
{11, 13, 17, 19} |
3 |
{x ∈ N : x is a prime number, 10 < x < 20} |
C |
{a, b, c, d} |
4 |
{x ∈ N : x = 2n, n ∈ N} |
D |
{2, 4, 6, 8, 10,...} |
જવાબ :
1-C, 2-A, 3-B, 4-D
If P = {1, 2, 3, 4, 5}, Q = {4, 5, 6, 7, 8}, R = {7, 8, 9, 10, 11} and S = {10, 11, 12, 13, 14}, find:
1 |
P∪Q |
A |
{1, 2, 3, 4, 5, 6, 7, 8} |
2 |
P∪R |
B |
{4, 5, 6, 7, 8, 9, 10, 11} |
3 |
Q∪R |
C |
{1, 2, 3, 4, 5, 7, 8, 9, 10, 11} |
જવાબ :
1-A, 2-C, 3-B
sets in set-builder form
1 |
A = {1, 2, 3, 4, 5, 6} |
A |
{x:x∈N, 9<x<16} |
2 |
B={1, ½ , 1/3 , ¼ , 1/5, ...} |
B |
{x:x∈N, x<7} |
3 |
C = {0, 3, 6, 9, 12, ...} |
C |
{x: x=1n, x∈N} |
4 |
D = {10, 11, 12, 13, 14, 15} |
D |
{x:x=3n, n∈Z+} |
જવાબ :
1-B, 2-C, 3-D, 4-A
Math
The GSEB Books for class 10 are designed as per the syllabus followed Gujarat Secondary and Higher Secondary Education Board provides key detailed, and a through solutions to all the questions relating to the GSEB textbooks.
The purpose is to provide help to the students with their homework, preparing for the examinations and personal learning. These books are very helpful for the preparation of examination.
For more details about the GSEB books for Class 10, you can access the PDF which is as in the above given links for the same.