CBSE Solutions for Class 11 English

GSEB std 10 science solution for Gujarati check Subject Chapters Wise::

The equations of the tangents to the ellipse 9x2 + 16y2 = 144 from the point (2, 3) are ___________

Hide | Show

જવાબ : x + y = 5, y = 3


The latus-rectum of the conic 3x2 + 4y2 − 6x + 8y − 5 = 0 is ___________

Hide | Show

જવાબ : 3


The eccentricity of the conic 9x2 + 25y2 = 225 is ___________

Hide | Show

જવાબ : 4/5


The difference between the lengths of the major axis and the latus-rectum of an ellipse is ___________

Hide | Show

જવાબ : 2ae2


The eccentricity of the ellipse, if the minor axis is equal to the distance between the foci, is ___________

Hide | Show

જવાબ : 1/√2


The eccentricity of the ellipse, if the distance between the foci is equal to the length of the latus-rectum, is ___________

Hide | Show

જવાબ : √5-1/2


The eccentricity of the ellipse x2/a2 + y2/b2 =1 if its latus rectum is equal to one half of its minor axis, is___________

Hide | Show

જવાબ : √3/2


The equation of the circle drawn with the two foci of x2/a2 + y2/b2 = 1 as the end-points of a diameter is___________

Hide | Show

જવાબ : x2 + y2 = a2 − b2


If the equation of a circle is 2λx2 + (4λ − 6)y2 − 8x + 12y − 2 = 0, then the coordinates of centre are _________

Hide | Show

જવાબ : (2/3, −1)


The equation x2 + y2 + 2x − 4y + 5 = 0 represents _____________

Hide | Show

જવાબ : a point


If the centroid of an equilateral triangle is (1, 1) and its one vertex is (2, 2), then the equation of its circumcircle is _____________

Hide | Show

જવાબ : x2 + y2 − 2x − 2y = 0


The equation of the incircle formed by the coordinate axes and the line 4x + 3y = 6 is_____________

Hide | Show

જવાબ : 4 (x2 + y2 − x − y) + 1 = 0


the circles x2 + y2 = 9 and x2 + y2 + 8y + 2c = 0 touch each other, then c is equal to _____________

Hide | Show

જવાબ : 15


If the circle x2 + y2 + 2ax + 6y + 9 = 0 touches x-axis, then the value of a is _____________

Hide | Show

જવાબ : ± 3


The equation of a circle with radius 4 and touching both the coordinate axes is _____________

Hide | Show

જવાબ : xy± 8x ± 8y + 16 = 0


The equation of the circle passing through the origin which cuts off intercept of length 6 and 6 from the axes is _____________

Hide | Show

જવાબ : x2 + y2 − 6x − 7y = 3√2 - 18


The circle x2 + y2 + 2gx + 2fy + c = 0 does not intersect x-axis, if g2 _____________

Hide | Show

જવાબ : < c


If (x, 3) and (3, 5) are the extremities of a diameter of a circle with centre at (2, y), then the values of x and y are _____________

Hide | Show

જવાબ : x = 1, y = 4


Equation of the diameter of the circle x2 + y2 + 4x - 2y = 0 which passes through the origin is _____________

Hide | Show

જવાબ : x + 2y = 0


The vertex of the parabola (y + k)2 = 8k (x − k) is _____________

Hide | Show

જવાબ : (k, −k)


The equation of the parabola whose vertex is (k, 0) and the directrix has the equation y = 3k, is _____________

Hide | Show

જવાબ : x2 − 2xy + y2 + 6kx + 10ky – 7k2 = 0


The locus of the points of trisection of the double ordinates of a parabola is a _____________

Hide | Show

જવાબ : x2 − 2xy + y2 + 6kx + 10ky – 7k2 = 0


The equation of the parabola with focus (0, 0) and directrix x + y = 7 is _____________

Hide | Show

જવાબ : x2 + y2 − 2xy + 14x + 14y − 49 = 0


The equation of the ellipse with focus (−1, 1), directrix x − y + 3 = 0 and eccentricity 1/2 is ___________

Hide | Show

જવાબ : 7x2 + 2xy + 7y2 + 10x − 10y + 7 = 0


For the ellipse 12x2 + 4y2 + 24x − 16y + 25 = 0, centre is ___________

Hide | Show

જવાબ : (−1, 2)


The locus of the point of intersection of the lines √3x-y-4√3λ=0 and √3λxy-4√3=0 is a hyperbola of eccentricity ___________

Hide | Show

જવાબ : 2


The equation of the hyperbola whose centre is (6, 2) one focus is (4, 2) and of eccentricity 2 is ___________

Hide | Show

જવાબ : 3 (x − 6)2 − (y −2)2 = 3


In the parabola y2 = 4kx, the length of the chord passing through the vertex and inclined to the axis at π/4 is _____________

Hide | Show

જવાબ : 4√2k


The equation 9x2 + y2 + 6xy − 74x − 78y + 212 = 0 represents _____________

Hide | Show

જવાબ : a parabola


Which points lie on the parabola x2 = ay?

Hide | Show

જવાબ : x = aty = at2


Which points lie on the parabola x2 = 9ay?

Hide | Show

જવાબ : x = 3aty = 3at2


Which points lie on the parabola 16x2 = 16ay?

Hide | Show

જવાબ : x = aty = at2


Equation of the hyperbola whose vertices are (± 5, 0) and foci at (± 13, 0), is_____________

Hide | Show

જવાબ : 144x2 − 25y2 = 3600


If e1 and e2 are respectively the eccentricities of the ellipse x2/18 + y2/4 = 1 and the hyperbola x2/9 - y2/4 = 1, then the relation between e1 and e2 is_____________

Hide | Show

જવાબ : 2 e12 + e22 = 3


The distance between the directrices of the hyperbola x = 8 sec θ, y = 8 tan θ, is_____________

Hide | Show

જવાબ : 8√2


The equation of the conic with focus at (1, −1) directrix along x − y + 1 = 0 and eccentricity √2 is_____________

Hide | Show

જવાબ : 2xy − 4x + 4y + 1 = 0


The eccentricity of the conic 25x2 − 144y2 = 3600 is_____________

Hide | Show

જવાબ : 13/12


A point moves in a plane so that its distances PA and PB from two fixed points A and B in the plane satisfy the relation PA − PB = k (k ≠ 0), then the locus of P is_____________

Hide | Show

જવાબ : a hyperbola


The eccentricity of the hyperbola which has latus-rectum ½ of its transverse axis, is_____________

Hide | Show

જવાબ : √[3/2]


The eccentricity of the hyperbola x2 − 4y2 = 1 is _____________

Hide | Show

જવાબ : √5/2


The difference of the focal distances of any point on the hyperbola is equal to _____________

Hide | Show

જવાબ : length of the transverse axis


The foci of the hyperbola 25x2 − 144y2 = 3600 are _____________

Hide | Show

જવાબ : (± 13, 0)


The eccentricity the hyperbola x=a2(t+1t), y=a2(t-1t) is ___________

Hide | Show

જવાબ : √2


The foci of the hyperbola 2x2 − 3y2 = 5 are ___________

Hide | Show

જવાબ : (±5/√6,0)


The latus-rectum of the hyperbola 16x2 − 9y2 = 144 is ___________

Hide | Show

જવાબ : 32/3


The length of the straight line x − 3y = 1 intercepted by the hyperbola x2 − 4y2 = 1 is ___________

Hide | Show

જવાબ : 6√2/5


The distance between the foci of a hyperbola is 8 and its eccentricity is √2, then equation of the hyperbola is_____________

Hide | Show

જવાબ : x2 − y= 8


If e1 is the eccentricity of the conic 9x2 + 4y2 = 36 and e2 is the eccentricity of the conic 9x2 − 4y2 = 36, then e22 − e12 : _____________

Hide | Show

જવાબ : 2 < e22 − e12 < 3


If the eccentricity of the hyperbola x2 − y2 sec2α = 5 is √3 times the eccentricity of the ellipse x2 sec2 α + y2 = 25, then α =___________

Hide | Show

જવાબ : π/4


The equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity 2, is ___________

 

Hide | Show

જવાબ : [(x-1)2]25/4 – [(y-4)2]75/4=1


Find the radius of each of the following circles :  x2 + y2 − 4x + 6y = 5

 

Hide | Show

જવાબ : Let (p, q) be the centre of a circle with radius a.
Thus, its equation will be (x−p)2 + (y−q)2 = a2
Given:
x2 + y2 − 4x + 6y = 5

The given equation can be rewritten as follows:
(x−2)2+(y+3)2−4−9=5
⇒(x−2)2 + (y+3)2 =18

Thus, the radius = √18=3√2


Find the radius of each of the following circles :   (x + 5)2 + (y + 1)2 = 9

 

Hide | Show

જવાબ : Let (p, q) be the centre of a circle with radius a.
Thus, its equation will be (x−p)2 + (y−q)2 = a2
Given:
(x + 5)2 + (y + 1)2 = 9
Thus, the radius = 3


Find the centre of each of the following circles :  x2 + y− x + 2y − 3 = 0.

 

Hide | Show

જવાબ : Let (p, q) be the centre of a circle with radius a.
Thus, its equation will be (x−p)2 + (y−q)2 = a2
Given:
x2 + y2− x + 2y − 3=0

The given equation can be rewritten as follows:
(x− ½ )2+(y+1)2− ¼ −1−3=0
⇒(x− ½ )2 + (y+1)2 = 17/4
Thus, the centre is ( ½ ,−1)


Find the radius of each of the following circles :  (x − 1)2 + y2 = 4

 

Hide | Show

જવાબ : Let (p, q) be the centre of a circle with radius a.
Thus, its equation will be (x−p)2 + (y−q)2 = a2
Given:
(x − 1)2 + y2 = 4
Thus, the radius is 2.


Find the centre of each of the following circles :  x2 + y2 − 4x + 6y = 5

 

Hide | Show

જવાબ : Let (p, q) be the centre of a circle with radius a.
Thus, its equation will be (x−p)2 + (y−q)2 = a2
Given:
x2 + y2 − 4x + 6y = 5

The given equation can be rewritten as follows:
(x−2)2+(y+3)2−4−9=5
⇒(x−2)2 + (y+3)2 =18

Thus, the centre is (2, −3).


Find the centre of each of the following circles :  (x + 5)2 + (y + 1)2 = 9

 

Hide | Show

જવાબ : Let (p, q) be the centre of a circle with radius a.
Thus, its equation will be (x−p)2 + (y−q)2 = a2
Given:
(x + 5)2 + (y + 1)2 = 9

Here, p = −5, q = −1

Thus, the centre is (-5, −1).


Find the centre of each of the following circles :  (x − 1)2 + y2 = 4

 

Hide | Show

જવાબ : Let (p, q) be the centre of a circle with radius a.
Thus, its equation will be (x−p)2 + (y−q)2 = a2
Given:
(x − 1)2 + y2 = 4

Here, p = 1, q = 0 and a = 2

Thus, the centre is (1, 0)


Find the focus of the following parabolas  :  y2 = 8x + 8y

Hide | Show

જવાબ : Given:
y2 = 8x + 8y
⇒(y−4)2=8(x+2)
Putting Y=y−4, X=x+2:
Y2=8X

On comparing the given equation with Y2=4aX:
4a=8

⇒a=2

∴ Focus = (X = a, Y = 0) = (x+2=2, y−4=0)=(x=0, y=4)


Find the focus of the following parabolas  :  y2 + 4x + 4y − 3 = 0

Hide | Show

જવાબ : Given:
y2 + 4y + 4x −3 = 0

⇒(y+2)2− 4 + 4x – 3 = 0

⇒(y+2)2=−4 (x−7/4)
Let Y=y+2, X=x−7/4
Then, we have:
Y2=−4X

Comparing the given equation with Y2=−4aXY2=-4aX:
4a=4

⇒a=1

∴ Focus = (X = −a, Y = 0) = (x−74=−1, y+2=0)=(x=34, y=−2)


Find the focus of the following parabolas  :  y2 − 4y + 4x = 0

Hide | Show

જવાબ : Given:
y2 − 4y + 4x = 0

⇒(y−2)2−4+4x=0

⇒(y−2)2=−4(x−1)

Let Y=y−2, X=x−1
Then, we have:
Y2=−4X

Comparing the given equation with Y2=−4aX:

4a=4

⇒a=1

∴ Focus = (X = −a, Y = 0) = (x−1=−1, y−2=0)=(x=0, y=2)


Find the focus of the following parabolas  :  y2 − 4y − 3x + 1 = 0

Hide | Show

જવાબ : Given: 
y2 − 4y − 3x + 1 = 0

⇒(y−2)2−4−3x+1=0

⇒(y−2)2 = 3(x+1)

⇒(y−2)2= 3(x−(−1))
Let Y=y−2, X=x+1
Then, we have:
Y2=3X
Comparing the given equation with Y2=4aX:
4a=3⇒a= ¾
∴ Focus = (X = a, Y = 0) = (x+1=34, y−2=0)=(x=−14, y=2)


Find the focus of the following parabolas  :  4x2 + y = 0

Hide | Show

જવાબ : Given:
  4x2 + y = 0

⇒−y/4=x2

On comparing the given equation with x2=−4ay:

4a=1/4⇒

a=116

∴ Focus = (0, −a) = (0,−116)


Find the focus of the following parabolas  :  y2 = 8x

Hide | Show

જવાબ : Given:
  y2 = 8x
On comparing the given equation with y2=4ax:
4a=8

⇒a=2

∴ Focus = (a, 0) = (2, 0)


Find the vertex of the following parabolas  :  y2 = 8x + 8y

Hide | Show

જવાબ : Given:
y2 = 8x + 8y
⇒(y−4)2=8(x+2)

Putting Y=y−4, X=x+2:
Y2=8X

On comparing the given equation with Y2=4aX:
4a=8

⇒a=2

∴ Vertex = (X = 0, Y = 0) = (x=−2, y=4)x=-2, y=4


Find the vertex of the following parabolas  :  y2 + 4x + 4y − 3 = 0

Hide | Show

જવાબ : Given:
y2 + 4y + 4x −3 = 0

⇒(y+2)2−4+4x−3=0

⇒(y+2)2=−4(x−7/4)

Let Y=y+2, X=x−7/4
Then, we have:
Y2=−4XY

Comparing the given equation with Y2=−4a:
4a=4

⇒a=1

∴ Vertex = (X = 0, Y = 0) = (x=74, y=−2)x=74, y=-2


Find the vertex of the following parabolas  :  y2 − 4y + 4x = 0

Hide | Show

જવાબ : Given :

y2 − 4y + 4x = 0

⇒(y−2)2−4+4x=0

⇒(y−2)2=−4(x−1)
Let Y=y−2, X=x−1
Then, we have:
Y2=−4X

Comparing the given equation with Y2=−4aX:

4a=4

⇒a=1

∴ Vertex = (X = 0, Y = 0) = (x=1, y=2)x=1, y=2


Find the vertex of the following parabolas  :  y2 − 4y − 3x + 1 = 0

Hide | Show

જવાબ : Given: 
y2 − 4y − 3x + 1 = 0

⇒(y−2)2−4−3x+1=0

⇒(y−2)2=3(x+1)

⇒(y−2)2=3(x−(−1))

Let Y=y−2, X=x+1
Then, we have:
Y2=3X

Comparing the given equation with Y2=4aX:

4a=3

⇒a=34

∴ Vertex = (X = 0, Y = 0) = (x=−1, y=2)


Find the vertex of the following parabolas  :  4x2 + y = 0

Hide | Show

જવાબ : Given:
  4x2 + y = 0
⇒-y/4=x2

On comparing the given equation with x2=−4ay:

4a=1/4

⇒a=1/16

∴ Vertex = (0, 0)


Find the vertex of the following parabolas  :  y2 = 8x

 

Hide | Show

જવાબ : Given:
  y2 = 8x

On comparing the given equation with y2=4ax:
4a=8⇒a=2

∴ Vertex = (0, 0)


Find the radius of each of the following circles :  x2 + y− x + 2y − 3 = 0.

Hide | Show

જવાબ : Let (p, q) be the centre of a circle with radius a.
Thus, its equation will be (x−p)2 + (y−q)2 = a2

Given:
x2 + y2− x + 2y − 3=0

The given equation can be rewritten as follows:
(x− ½ )2+(y+1)2− ¼ −1−3=0
⇒(x− ½ )2 + (y+1)2 = 17/4

Thus, the centre is ( ½ ,−1) and and the radius is √17/2.


There are No Content Availble For this Chapter

Download PDF

Take a Test

Choose your Test :

Conic Section

Math

Browse & Download CBSE Books For Class 11 All Subjects

The GSEB Books for class 10 are designed as per the syllabus followed Gujarat Secondary and Higher Secondary Education Board provides key detailed, and a through solutions to all the questions relating to the GSEB textbooks.

The purpose is to provide help to the students with their homework, preparing for the examinations and personal learning. These books are very helpful for the preparation of examination.

For more details about the GSEB books for Class 10, you can access the PDF which is as in the above given links for the same.