જવાબ : Consider LHS:cos 80° + cos 40° − cos 20° = 2cos (80°/2 + 40°/2) cos (80°/2 − 40°/2) − cos 20° {∵ cosA+cosB=2cos(A/2+B/2)cos(A/2−B/2)} = 2cos 60° cos 20°− cos 20° = 2× ½ cos 20° − cos20° = cos 20° − cos 20°= 0 Hence, LHS=RHS.
જવાબ : Consider LHS:sin 50° − sin 70° + sin 10° = 2sin (50°/2 −70°/2) cos (50°/2 + 70°/2) + sin 10° {∵ sin A − sin B = 2sin (A/2-B/2) cos (A/2 + B/2)} = 2sin (−10°) cos 60° + sin 10° =2× ½ sin (−10°) + sin 10° = −sin 10°+sin 10°= 0 Hence, LHS=RHS.
જવાબ : Consider LHS: cos 55° + cos 65° + cos 175° = 2cos (55°/2 + 65°/2) cos (55°/2 − 65°/2) + cos 175° {∵ cosA+cosB=2cos(A/2+B/2)cos(A/2−B/2)} = 2cos 60° cos(−5°) + cos 175° = 2× ½ cos 5° + cos 175° =cos 5° + cos 175° = 2cos (5°/2 + 175°/2) cos (5°/2 − 175°/2) = 2cos 90° cos 85°= 0 Hence, LHS=RHS.
જવાબ : Consider LHS:sin 40° + sin 20° = 2sin (40°/2 + 20°/2) cos (40°/2 − 20°/2) {∵ sinA+sinB=2sin(A/2+B/2)cos(A/2−B/2)} = 2sin 30° cos 10°= 2× ½ cos 10° = cos(10°) Hence, LHS = RHS
જવાબ : Consider LHS:sin 105° + cos 105°= sin 105° + cos (90° + 15°)= sin 105° − sin 15°= 2sin (105°/2 − 15°/2) cos (105°/2 + 15°/2) {∵ sinA+sinB=2sin(A/2−B/2)cos(A/2+B/2)} = 2sin 45°cos 60°= 2sin (90° − 45°) cos 60° = 2× ½ cos(45°) =cos 45° Hence, LHS=RHS.
જવાબ : Consider LHS:sin 23° + sin 37° = 2sin (23°/2 + 37°/2) cos (23°/2− 37°/2) {∵ sin A + sin B = 2sin (A/2 + B/2) cos (A/2 – B/2)} = 2sin 30° cos (−7°) = 2sin 30°cos 7°= 2× ½ cos 7°= cos 7° Hence, LHS=RHS.
જવાબ : Consider LHS:sin 50° + sin 10° = 2sin (50°/2 + 10°/2) cos (50°/2 − 10°/2) {∵ sin A + sin B = 2sin (A/2 + B2/) cos (A/2 – B/2)} = 2sin 30° cos 20°=2× ½ cos 20°= cos 20° Hence, LHS = RHS.
જવાબ : Consider LHS:cos 100° + cos 20°= 2cos (100°/2 + 20°/2) cos (100°/2 − 20°/2) {∵ cosA+cosB=2cos(A/2+B/2)cos(A/2−B/2)} = 2cos 60° cos 40° = 2× ½ cos 40° = cos 40° Hence, LHS=RHS.
જવાબ : 2sin (π/4 − x) cos (3x – π/4)
જવાબ : -19π/72 rad
જવાબ : 5π/3 rad
જવાબ : π/24 rad
જવાબ : 251π/360 rad
જવાબ : -5π/3 rad
જવાબ : 7π/36 rad
જવાબ : - 14π/45 rad
જવાબ : 3π/4 rad
જવાબ : -√3 / 2
જવાબ : 0
જવાબ : -1/√3
જવાબ : -1/2
જવાબ : 1/√2
જવાબ : 1/√2
જવાબ : 1/√2
જવાબ : -1
જવાબ : 1/2
જવાબ : -√3/2
જવાબ : 1/2
જવાબ : -1/√2
જવાબ : -1
જવાબ : -2/√3
જવાબ : LHS =cos (570°)sin (510°) + sin (−330°)cos (−390°) =cos (570°) sin (510°) + [−sin (330°)]cos (390°) [∵ sin(−x) = −sin x and cos(−x) = cos x] =cos (570°)sin(510°) −sin (330°) cos (390°) =cos (90°×6+30°) sin (90°×5+60°) −sin (90°×3+60°) cos (90°×4+30°) =−cos (30°) cos (60°) −[−cos (60°)] cos (30°) =−cos (30°) cos (60°) +cos (30°) sin (60°) = 0 = RHS
જવાબ : LHS = tan (−225°) cot (−405°) − tan (−765°) cot (675°) =[− tan (225°)][−cot (405°)] − [−tan (765°)] cot (675°) [∵ tan (−x) = tan (x) and cot (−x) = −cot (x)] = tan (225°) cot (405°) +tan (765°) cot (675°) =tan (90°×2+45°) cot (90°×4+45°) + tan (90°×8+45°) cot (90°×7+45°) =tan (45°) cot (45°) + tan (45°)[−tan (45°)] = 1×1 + 1×(−1) = 1−1 = 0 = RHS
જવાબ : LHS = cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = cos 24° + cos (90°−35°) + cos (90°×1+35°)+ cos (90°×2+24°) + cos (90°×3+30°) =cos 24° + sin 35° − sin 35°− cos 24° + sin 30° =0 + 0+ 12 = 12 = RHS
જવાબ : LHS = tan225°cot405° + tan765°cot675° =tan (90°×2+45°)cot (90°×4+45°) + tan (90°×8+45°) cot (90°×7+45°) =tan (45°) cot (45°) + tan (45°)[−tan (45°)] = 1×1 + 1×(−1) = 1−1 = 0 = RHS
જવાબ : sin3x + cos2x = 0
⇒cos2x =- sin3x⇒ cos2x= cos(π/2 + 3x)⇒ 2x= 2nπ ± (π/2 + 3x), n ∈Z
On taking positive sign, we have:
2x = 2nπ + π/2 + 3x⇒ -x = 2nπ + π/2⇒ x = 2mπ – π/2, m=-n ∈ Z⇒ x = (4m -1)π/2, m∈ Z
On taking negative sign, we have:
2x = 2nπ – π/2 - 3x⇒ 5x = 2nπ – π/2⇒ x = (4n -1)π/10, n∈Z
જવાબ : sinx = tanx
⇒ sinx - tanx = 0⇒ sinx – sinx/cosx = 0⇒ sinx (1 – 1/cosx) = 0⇒sinx (cosx -1) = 0
⇒ sinx = 0 or cosx - 1 = 0
Now,
sinx= 0 ⇒x = nπ, n∈Z
cosx - 1 = 0 ⇒ cosx = 1 ⇒ cosx= cos0 ⇒ x= 2mπ, m ∈Z
જવાબ : sin2x + cosx= 0
⇒cosx=-sin 2x⇒ cosx= cos (π/2 + 2x)⇒x= 2nπ ± (π/2 + 2x), n∈Z
On taking positive sign, we have:
x= 2nπ + π/2 + 2x⇒-x = 2nπ + π/2⇒ x= 2mπ – π/2, m =-n ∈Z⇒x = (4m -1)π/2, m∈Z
On taking negative sign, we have:
x= 2nπ – π/2 - 2x⇒ 3x = 2nπ – π/2⇒ x =(4n - 1)π/6, n∈ Z
જવાબ : tanpx =cotqx
⇒tanpx= tan (π/2 - qx)⇒ px = nπ + (π/2 - qx ), n∈ Z⇒ (p + q)x = nπ + π/2, n∈ Z⇒x= (2n + 1p + q)π/2, n∈Z
જવાબ : tanmx + cotnx = 0
⇒ tanmx =-cotnx⇒ tanmx = tan (π/2 + nx)⇒ mx = rπ + (π/2 + nx), r ∈Z⇒ (m - n) x = rπ + π/2, r ∈Z⇒ x = (2r + 1m - n)π/2, r ∈Z
જવાબ : tan2x tanx = 1
⇒tan2x =1/tan x⇒ tan2x = cot x⇒ tan2x =tan (π/2 - x)⇒ 2x = nπ + (π/2 -x), n∈Z⇒ 3x= nπ + π/2, n∈Z⇒x= nπ/3 + π/6, n∈Z
જવાબ : tan3x = cotx
⇒ tan3x = tan (π/2 - x)⇒ 3x = nπ + (π/2 - x), n∈Z⇒ 4x = nπ + π/2, n∈Z⇒x = nπ/4 + π/8, n∈Z
જવાબ : tanx + cot2x = 0
⇒ tan x =-cot2x⇒ tanx = tan (π/2 + 2x)⇒ x = nπ + (π/2 + 2x), n∈Z⇒ -x = nπ + π2, n∈Z⇒ x = -nπ – π/2, n∈Z ⇒ x = mπ – π/2, m = -n∈Z
જવાબ : sin2x= cos3x
cos3x =sin2x
⇒ cos3x = cos (π/2-2x)
⇒ 3x = 2nπ ± (π/2-2x), n∈Z
On taking positive sign, we have:
3x = 2nπ + (π/2-2x)
⇒ 5x= 2nπ + π/2
⇒ x = 2nπ/5 + π/10
⇒ x= (4n + 1)π/10, n ∈ Z
Now, on taking negative sign, we have:
3x = 2nπ – π/2 + 2x, n∈Z
⇒ x= 2nπ – π/2
⇒ x = (4n - 1)π/2, n∈ Z
જવાબ : sin9x = sinx
⇒ sin9x - sinx= 0
⇒ 2 sin (9x/2 – x/2) cos (9x/2 + x/2)= 0
⇒ sin 8x/2 = 0 or cos 10x2 = 0
⇒ sin 4x= 0 or cos 5x= 0
⇒ 4x= nπ, n ∈ Z or 5x = (2n + 1)π/2, n ∈Z
⇒ x= nπ/4, n ∈Z or x= (2n + 1)π/10, n ∈Z
જવાબ : 2sin8xcos4x
જવાબ : 2sin2x cos3x
જવાબ : 2 cos 10x cos 2x
જવાબ : -2sin A + B2 sin A - B2=-2 sin 8x sin 4x
જવાબ : 2sin (π/4 − x) cos (3x – π/4)
જવાબ : 2(sin6x+cos6x)-3(sin4x+cos4x)+1= 2(sin2x+cos2x)(sin4x+cos4x-sin+x.cos+x)-3(sin4x+cos4x)+1
=2.1(sin4x+cos4x-sin2x.cos2x)-3(sin4x+cos4x)+1 =2(sin4x+cos4x)-2sin2x.cos2x-3(sin4x+cos4x)+1=-(sin4x+cos4x)-2sin2x.cos2x+1 =-{sin4x+cos4x+2sin2x.cos2x}+1 =-(sin2x+cos2x)2+1=-1+1=0જવાબ : cos1°+cos2°+cos3°+...+cos180°
=cos1°+cos2°+cos3°+...+cos88°+cos89°+cos90°+cos(180-89)°+cos(180-88)°+...+cos(180-1)°+ cos180° [cos(180°-θ)=-cos θ] =cos1°+cos2°+cos3°+...+cos88°+cos89°+cos90°-cos89°-cos88°-...-cos1°+ cos180°=cos90°+cos180°=0-1=-1જવાબ : cot (α+β)=0⇒α+β=π/2 (1)
β=π/2-α (2) α=π/2-β (3) Now, sin(α+2β) = sin(α+β+β) =sin(π/2+π/2-α) =sin(π-α) =sin α Now, sin(α+2β) = sin(α+2β) =sin(π/2-β+2β) =sin(π/2+β) =cos βજવાબ : tanA+cotA=4
Squaring both the sides:tan2A+cot2A+2=16 ⇒tan2A+cot2A=14 Squaring both the sides again:tan4A+cot+A+2=196 ⇒tan4A+cot4A=194જવાબ : We know:
cos x can take the minimum value of -1.
cos2 x + sec2 x
=cos4x+1/cos2x=(-1)4+1(-1)2=2
જવાબ : f(x) = 2 cosec πx
જવાબ : f(x) = 3 sec x
જવાબ : f(x) = cot 2x
જવાબ : f(x) = tan2 x
જવાબ : f(x) = 2 sec πx
જવાબ : Given: sinA = 4/5 and cosB = 51/3
We know that cosA = √(1 - sin2A) and sinB = √(1 - cos2B) , where 0 < A , B < π/2 ⇒ cosA = √(1 - (4/5)2) and sinB = √[1 - (5/13)2] ⇒ cosA =√[1 – 16/25] and sinB = √[1 – 25/169] ⇒ cosA =√9/25 and sinB = √144/169 ⇒ cosA =3/5 and sinB = 12/13જવાબ : Given: sinA = 4/5 and cosB = 51/3
We know that cosA = √(1 - sin2A) and sinB = √(1 - cos2B) , where 0 < A , B < π/2 ⇒ cosA = √(1 - (4/5)2) and sinB = √[1 - (5/13)2] ⇒ cosA =√[1 – 16/25] and sinB = √[1 – 25/169] ⇒ cosA =√9/25 and sinB = √144/169 ⇒ cosA =3/5 and sinB = 12/13જવાબ : Given: sinA = 4/5 and cosB = 51/3
We know that cosA = √(1 - sin2A) and sinB = √(1 - cos2B) , where 0 < A , B < π/2 ⇒ cosA = √(1 - (4/5)2) and sinB = √[1 - (5/13)2] ⇒ cosA =√[1 – 16/25] and sinB = √[1 – 25/169] ⇒ cosA =√9/25 and sinB = √144/169 ⇒ cosA =3/5 and sinB = 12/13જવાબ : LHS=cos4x =cos(2×2x) =2cos2×2x-1 [∵cos2θ=2cos2θ-1]
=2(2cos2x-1)2-1 [∵cos22θ=(2cos2θ-1)2]જવાબ : LHS=sin 4x =2sin2x cos2x (∵sin2θ=2sinθcosθ)
Now, using the identities sin2α=2sinαcosα and cos2α=cos2α-sin2α, we get
LHS=2(2sinx cosx).(cos2x-sin2x) =4sinx cos3x-4sin3x cosx=RHS
જવાબ : Let asinA=b sinB=csinC=k
Then,
Consider the LHS of he equation b sin B-c sin C=a sin (B-C).
LHS=ksinBsinB-ksinCsinC
=k(sin2B-sin2C)=k[sin(B+C)sin(B-C)] [∵ sin2B-sin2C=sin(B+C)sin(B-C)]
જવાબ : Let a/sinA =b/ sinB =c/sinC =k
Then,
Consider the LHS of he equation b sin B-c sin C=a sin (B-C).
LHS=ksinBsinB-ksinCsinC
=k(sin2B-sin2C)=k[sin(B+C)sin(B-C)] [∵ sin2B-sin2C=sin(B+C)sin(B-C)]
જવાબ : f(x) = cot2 x
જવાબ : f(x)=cotπx2fx=cotπx2
1 |
Tan 180 |
A |
|
2 |
cos 40° + cos 80° + cos 160° + cos 240° |
B |
½ |
3 |
sin 163° cos 347° + sin 73° sin 167° |
C |
0 |
જવાબ :
1-C, 2-A, 3-B
1 |
cos 135 |
A |
1 |
2 |
Cos 180 |
B |
-√2/2 |
3 |
Cos 360 |
C |
-1 |
જવાબ :
1-B, 2-C, 3-A
1 |
2 π |
A |
1440° |
2 |
3 π |
B |
360° |
3 |
4 π |
C |
720° |
4 |
5 π |
D |
1080° |
જવાબ :
1-B, 2-C, 3-D, 4-A
જવાબ :
1-D, 2-C, 3-B, 4-A
જવાબ :
1-D, 2-C, 3-A, 4-B
જવાબ :
1-B, 2-C, 3-A
જવાબ :
1-A, 2-C, 3-B
જવાબ :
1-B, 2-C, 3-D, 4-A
જવાબ :
1-B, 2-D, 3-A, 4-C
જવાબ :
1-C, 2-A, 3-B, 4-D
Math
The GSEB Books for class 10 are designed as per the syllabus followed Gujarat Secondary and Higher Secondary Education Board provides key detailed, and a through solutions to all the questions relating to the GSEB textbooks.
The purpose is to provide help to the students with their homework, preparing for the examinations and personal learning. These books are very helpful for the preparation of examination.
For more details about the GSEB books for Class 10, you can access the PDF which is as in the above given links for the same.