CBSE Solutions for Class 11 English

GSEB std 10 science solution for Gujarati check Subject Chapters Wise::

If in the expansion of (1 + y)20, the coefficients of rth and (r + 4)th terms are equal, then r is equal to

Hide | Show

જવાબ : 9


The term without y in the expansion of (2y − 1/2y2)12 is

Hide | Show

જવાબ : 7920


The middle term in the expansion of (2y2/3 + 3/2y2)10 is

Hide | Show

જવાબ : 252


If an the expansion of (1+y)15, the coefficients of (2r+3)th and (r−1)th terms are equal, then the value of r is

Hide | Show

જવાબ : 5


In the expansion of (y2−1/3y)9, the term without y  is equal to

Hide | Show

જવાબ : 28/243


The coefficient of x−17 in the expansion of (x4−1/x3)15 is

Hide | Show

જવાબ : −1365


The number of irrational terms in the expansion of (41/5+71/10)45 is

Hide | Show

જવાબ : 41


If A and B are the sums of odd and even terms respectively in the expansion of (y + a)n, then (y + a)2n − (y − a)2n is equal to

Hide | Show

જવાબ : 4 AB


If in the expansion of (x + y)n and (x + y)n + 3, the ratio of the coefficients of second and third terms, and third and fourth terms respectively are equal, then n is

Hide | Show

જવાબ : 5


The coefficient of 1/y in the expansion of (1+y)n (1+1/y)n is

Hide | Show

જવાબ : 2n ! / [(n-1) ! (n+1) !]


If T2/T3 in the expansion of (a+b)n  and T3/T4 in the expansion of (a+b)n+3 are equal, then n =

Hide | Show

જવાબ : 5


The total number of terms in the expansion of (y+a)100 + (y−a)100 after simplification is

Hide | Show

જવાબ : 51


The coefficient of x4 in (x/2 – 3/x2)10 is

Hide | Show

જવાબ : 405/256


If the coefficient of y in (y2+λ/y)5 is 270, then λ=

Hide | Show

જવાબ : 3


If the sum of odd numbered terms and the sum of even numbered terms in the expansion of (x+a)n are A and B respectively, then the value of (x2−a2)n is

Hide | Show

જવાબ : A2 − B2​​​​​​​


In the expansion of ( ½ y1/3 + y−1/5)8, the term independent of y is

Hide | Show

જવાબ : T6


If in the expansion of (1 + x)n, the coefficients of 5th, 6th and 7th terms are in A.P., then n is equal to

Hide | Show

જવાબ : 7, 14


In the expansion of (y − 1/3y2)9, the term independent of y is

Hide | Show

જવાબ : T4


If in the expansion of (y4 − 1/y3)15, x−17 occurs in rth term, then

Hide | Show

જવાબ : r = 12


The general term of the expansion (p + q)n is

Hide | Show

જવાબ : Tr+1 = nCr × pn-r × qr


If a and b are the roots of the equation y² – y + 1 = 0 then the value of a2009 + b2009 is

Hide | Show

જવાબ : 1


The value of n in the expansion of (p + q)n if the first three terms of the expansion are 729, 7290 and 30375, respectively is

Hide | Show

જવાબ : 6


The coefficient of yn in the expansion of (1 – 2y + 3y² – 4y³ + ……..)-n is

Hide | Show

જવાબ : (2n)!/(n!)²


The greatest coefficient in the expansion of (1 + y)10 is

Hide | Show

જવાબ : 10!/(5!)²


If the third term in the binomial expansion of (1 + y)n is (-1/8)y² then the rational value of n is

Hide | Show

જવાબ : 1/2


If m is a positive integer, then (√7+1)2m+1 + (√7−1)2m+1 is

Hide | Show

જવાબ : an irrational number


The fourth term in the expansion (a – 2b)12 is

Hide | Show

જવાબ : -1760 a9 × b³


(1.2)10000 is _____ 1000

Hide | Show

જવાબ : greater than


The coefficient of x in the expansion of (x² + a/x)5 is

Hide | Show

જવાબ : 10a3


The number of ordered triplets of positive integers which are solution of the equation a + b + c = 100 is

Hide | Show

જવાબ : 4851


The greatest coefficient in the expansion of (1 + y)10 is

Hide | Show

જવાબ : 10!/(5!)²


if n is a positive ineger then 33nn – 3n  is divisible by

Hide | Show

જવાબ : 49


In the expansion of (p + q)n, if n is odd then the number of middle term is/are

Hide | Show

જવાબ : 2


In the expansion of (p + q)n, if n is even then the middle term is

Hide | Show

જવાબ : (n/2 + 1)th term


If n is a positive integer, then (√3+1)2n + 1 − (√3−1)2n + 1 is

Hide | Show

જવાબ : not an integer


The coefficient of yn in the expansion (1 + y + y² + …..)-n is

Hide | Show

જવાબ : (-1)n


If the coefficients of y2 and y3 in the expansion of (3 + ay)9 are the same, then the value of a is

Hide | Show

જવાબ : 97


If the sum of the binomial coefficients of the expansion (2y + 1/y)n is equal to 256, then the term independent of y is

Hide | Show

જવાબ : 1120


If the fifth term of the expansion ( p2/3 + p−1)n does not contain 'p'. Then n is equal to

Hide | Show

જવાબ : 10


The coefficient of y−3 in the expansion of (y − n/y)11 is

Hide | Show

જવાબ : −330 n7


The coefficient of the term independent of x in the expansion of (ax+bx)14 is

Hide | Show

જવાબ : 14!/(7!)2 a7 b7


The coefficient of y5 in the expansion of (1+y)21 + (1+y)22 + ... + (1+y)30  

Hide | Show

જવાબ : 31C6 − 21C6


The coefficient of p8 q10 in the expansion of (p + q)18 is

Hide | Show

જવાબ : 18C8


If the coefficients of the (m + 1)th term and the (m + 3)th term in the expansion of (1 + y)20 are equal, then the value of m is

Hide | Show

જવાબ : 9


If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1+y)n, n ∈ N are in A.P., then n =

Hide | Show

જવાબ : 7


The middle term in the expansion of (2y/3 – 3/2y2)2n is

Hide | Show

જવાબ : (−1)n 2nCn y−n


If rth term is the middle term in the expansion of (y2−1/2y)20, then (r+3)th term is

Hide | Show

જવાબ : −20C7 y, 2−13


The number of terms with integral coefficients in the expansion of (171/3 + 351/2 y)600 is

Hide | Show

જવાબ : 101


Constant term in the expansion of (y−1/y)10 is

Hide | Show

જવાબ : -252


If rth term in the expansion of (2y2−1/y)12 is without y, then r is equal to

Hide | Show

જવાબ : 9


Find the middle terms(s) in the expansion of : (x/a – a/x)10

Hide | Show

જવાબ : (x/a + a/x)10

Here, n is an even number. 

∴ Middle term = (10/2 +1 )th = 6th term

Now, we have T6 = T5+1 = 10C5 (x/a)10−5 (a/x)5 = 10×9×8×7×6/5×4×3×2×1 = 252


Find the middle terms(s) in the expansion of : (p/x + x/p)9

Hide | Show

જવાબ : (p/x - x/p)9

Here, n is an odd number.

Therefore, the middle terms are (9+1/2)th and [(9+1)/2 + 1]th, i.e., 5th and 6th terms.

Now, we have T5 = T4+1 = 9C4 (p/x)9−4 (-x/p)4 = (9×8×7×6)/(4×3×2×1) × (p/x) = 126 p/x And,T6 = T5+1 = 9C5 (p/x)9−5 (-x/p)5 = (9×8×7×6)/(4×3×2×1) × (-x/p) = -126 x/p


Find the middle terms(s) in the expansion of : (2ax−b/x2)12

Hide | Show

જવાબ : (2ax + b/x2)12

Here, n is an even number. 

∴ Middle term = (12/2 +1)th = 7th term

Now, we have T7 = T6 + 1 = 12C6  (2ax)12−6 (b/x2)6 = (12×11×10×9×8×7)/(6×5×4×3×2×1) × (2ab/x)6 = 59136 a6b6/x6


Find the middle terms(s) in the expansion of : (3 − x3/6)7

Hide | Show

જવાબ : (3 + x3/6)7

Here, n is an odd number.

Therefore, the middle terms are (7+1/2)th and [(7+1)/2 + 1]th, i.e., 4th and 5th terms.

Now, we have T4 = T3+1 = 7C3 (3)7−3 (x3/6)3

= 105/8 x9

And, T5 = T4+1 = 9C4 (3)9−4 (x3/6)4 = (7×6×5)/(3×2) × 35 × 1/64 x12 = 35/48 x12


Find the middle terms(s) in the expansion of : (x/3 + 9y)10

Hide | Show

જવાબ : (x/3 - 9y)10

Here, n is an even number.

Therefore, the middle term is (10/2 + 1 )th, i.e., 6th term.

Now, we have T6 = T5+1 = 10C5 (x/3)10−5 (-9y)5

= -(10×9×8×7×6)/(5×4×3×2) × 1/35 × 95 × x5 y5

= -61236 x5 y5


Find the middle terms(s) in the expansion of : (x – 1/x)2n+1

Hide | Show

જવાબ : (x + 1/x)2n+1

Here, (2n+1)  is an odd number.

Therefore, the middle terms are (2n+1+1/2)th and [(2n+1+1)/2 + 1]th i.e. (n+1)th and (n+2)th terms.

Now, we have: Tn+1 = 2n+1Cn x2n+1−n  × (1)n/xn = (1)n 2n+1Cn x

And,Tn+2 = Tn+1+1 = 2n+1Cn+1 x2n+1−n−1   (1)n+1/xn+1 = (1)n+1 2n+1Cn+1 × 1/x


Find the middle terms(s) in the expansion of : (2x − x2/4)9

Hide | Show

જવાબ : (2x + x2/4)9

Here, n is an odd number.

Therefore, the middle terms are [(n+1)/2]th and [(n+1)/2 + 1]th, i.e. 5th and 6th terms.

Now, we haveT5 = T4+1 = 9C4 (2x)9−4 (x2/4)4 = (9×8×7×6)/(4×3×2) × 25 1/44 x5+8 =63/4 x13

And,T6 = T5+1 = 9C5 (2x)9−5 (x2/4)5 = (9×8×7×6)/(4×3×2) × 24 1/45 x4 + 10 = 63/32 x14


Find the middle terms(s) in the expansion of : (1 + 3x + 3x2 + x3)2n

Hide | Show

જવાબ : (1 + 3x - 3x2 + x3)2n =(1 - x)6n

Here, n  is an even number.

∴ Middle term = (6n/2 + 1 )th = (3n+1)th term

Now, we have T3n+1 = 6nC3n x3n = (6n)!/(3n!)2 x3n


Find the middle terms(s) in the expansion of : (1 + 2x + x2)n

Hide | Show

જવાબ : (1 + 2x + x2)n

= (1+x)2n

n is an even number.

∴ Middle term = (2n/2 + 1)th = (n+1)th term

Now, we haveTn+1 = 2nCn (1)n (x)n = (2n)!/(n!)2 (1)n xn


Find the middle terms(s) in the expansion of : (x + 1/x)10

Hide | Show

જવાબ : (x + 1/x)10

Here, n is an even number. 

 Middle term = (10/2 + 1)th= 6th term

 Now, we haveT6 = T5 + 1 =10C5 x10−5 (1/x)5 = (10×9×8×7×6)/(5×4×3×2) = 252


There are No Content Availble For this Chapter

Download PDF

Take a Test

Choose your Test :

Binomial Theorem

Math

Browse & Download CBSE Books For Class 11 All Subjects

The GSEB Books for class 10 are designed as per the syllabus followed Gujarat Secondary and Higher Secondary Education Board provides key detailed, and a through solutions to all the questions relating to the GSEB textbooks.

The purpose is to provide help to the students with their homework, preparing for the examinations and personal learning. These books are very helpful for the preparation of examination.

For more details about the GSEB books for Class 10, you can access the PDF which is as in the above given links for the same.