CBSE Solutions for Class 11 English

GSEB std 10 science solution for Gujarati check Subject Chapters Wise::

If y² = -16 then the value of y are ____________

Hide | Show

જવાબ : No solution


If y² = 4 then the value of y are ____________

Hide | Show

જવાબ : {-2, 2}


If y² = 16 then the value of y is ____________

Hide | Show

જવાબ : {-4, 4}


If y² = -9 then the value of y is ____________

Hide | Show

જવાબ : No solution


If (x + 3)/(x – 2) > 1/2 then x lies in the interval ____________

Hide | Show

જવાબ : (-8, ∞)


Solve: (x + 1)² + (x² + 3x + 2)² = 0

Hide | Show

જવાબ : x = -1


If x² = -4 then the value of x has ____________

Hide | Show

જવાબ : No solution


Sum of two rational numbers is ______ number.

Hide | Show

જવાબ : rational


Solve: 1 ≤ |y – 1| ≤ 3

Hide | Show

જવાબ : [-2, 0] ∪ [2, 4]


The complete set of values of l, for which the quadratic equation x2−lx+l+2=0 has equal roots, consists of ____________

Hide | Show

જવાબ : 2 ± √12


For the equation |x|2+|x|−6=0, the sum of the real roots is ____________

Hide | Show

જવાબ : 0


If pq is the roots of the equation x 2+ xs+1=0, then p2+q2= ____________

Hide | Show

જવાબ : 1


If a, b are roots of the equation 4x2+3x+7=0, then 1/a + 1/b is equal to ____________

Hide | Show

જવાબ : −3/7


The values of y satisfying log3 (y2+4y+12) =2 are ____________

Hide | Show

જવાબ : −1, −3


The number of real roots of the equation (y2+2y) 2−(y+1)2−55=0 is ____________

Hide | Show

જવાબ : 2


If α, β are the roots of the equation ax2+bx+c=0, then 1/ (AA+b) + 1/ (aβ+b) = ____________

Hide | Show

જવાબ : b/ac


If α, β are the roots of the equation x2+ax+1=0; γ, δ the roots of the equation x2+bx+1=0, then (α−γ) (α+δ) (β−γ) (β+δ) = ____________

Hide | Show

જવાબ : b2−a2


The number of real solutions of ∣2x−x2−3∣=1 is ____________

Hide | Show

જવાબ : 2


The number of solutions of y2+|y−1|=1 is ____________

Hide | Show

જવાબ : 2


If x is real and m= (x2−x+1)/(x2+x+1), then m ∈ ____________

Hide | Show

જવાબ : [1/3, 3]


If the roots of x2−bx+c=0 are two consecutive integers, then b2 − 4c is ____________

Hide | Show

જવાબ : 1


The value of k such that x2−11x+k=0 and x2−14x+2k=0 may have a common root is

Hide | Show

જવાબ : 12 & 24


The values of l for which the quadratic equation lx2+1=lx+3x−11x2 has real and equal roots are

Hide | Show

જવાબ : 5, −7


If the equations x2+2x+3k=0 and 2x2+3x+5k=0 have a non-zero common roots, then k =

Hide | Show

જવાબ : −1


If one root of the equation x2+ax+12=0 is 4, while the equation x2+ax+b=0 has equal roots, the value of b is

Hide | Show

જવાબ : 49/4


The value of a and b (a ≠ 0, b ≠ 0) for which ab are the roots of the equation x2+ax+b=0 are

Hide | Show

જવાબ : a = 1, b = −2


The set of all values of k for which both the roots of the equation x2− (k+1) x+k+4=0 are real and negative, is

Hide | Show

જવાબ : (−4, −3]


The number of roots of the equation (y+2) (y−5)/ (y−3) (y+6) = (y−2)/(y+4) is ____________

Hide | Show

જવાબ : 1


If α and β are the roots of 4x2+3x+7=0, then the value of 1/α+1/β is ____________

Hide | Show

જવાબ : −3/7


If α, β are the roots of the equation x2+ax+b=0 then −1/a+1/b are the roots of the equation ____________

Hide | Show

જવાબ : bx2−ax+1=0


If the difference of the roots of x2−ax+b=0 is unity, then a2−4b= ____________

Hide | Show

જવાબ : 1


If α, β are the roots of the equation x2−a(x+1) −c=0, then (α+1) (β+1) = ____________

Hide | Show

જવાબ : 1 – c


The least value of which makes the roots of the equation x2+5x+m=0 imaginary is ____________

Hide | Show

જવાબ : 7


The equation of the smallest degree with real coefficients having 1 + I as one of the roots is ____________

Hide | Show

જવાબ : y2−2y+2=0


The interval in which f(x) = (x – 1) × (x – 2) × (x – 3) is negative is ____________

Hide | Show

જવાબ : 2 < x < 3 and x < 1


If -2 < 2x – 1 < 2 then the value of x lies in the interval ____________

Hide | Show

જવાબ : (-1/2, 3/2)


The solution of the inequality |x – 1| < 2 is ____________

Hide | Show

જવાબ : (-1, 3)


If | x − 1| > 5, then x∈ ____________

Hide | Show

જવાબ : (−∞, −4)∪(6, ∞)


The solution of |2/(x – 4)| > 1 where x ≠ 4 is ____________

Hide | Show

જવાબ : (2, 4) ∪ (4, 6)


If (|y| – 1)/ (|y| – 2) ‎≥ 0, y ∈ R, y ‎± 2 then the interval of y is ____________

Hide | Show

જવાબ : (-∞, -2) ∪ [-1, 1] ∪ (2, ∞)


The solution of the -12 < (4 -3y)/ (-5) < 2 is ____________

Hide | Show

જવાબ : -56/3 < y < 14/3


If y² = -4 then the value of y are ____________

Hide | Show

જવાબ : No solution


Solve: |y – 3| < 5

Hide | Show

જવાબ : (-2, 8)


The graph of the in equations x ≥ 0, y ≥ 0, 3x + 4y ≤ 12 is ____________

Hide | Show

જવાબ : interior of a triangle including the points on the sides


If |y| < 5 then the value of y lies in the interval ____________

Hide | Show

જવાબ : (-5, 5)


Solve: f (p) = {(p – 1) × (2 – p)}/ (p – 3) ≥ 0

Hide | Show

જવાબ : (-∞, 1] ∪ (2, 3)


If x² = 4 then the value of x is ____________

Hide | Show

જવાબ : -2, 2


The solution of the 15 < 3(y – 2)/5 < 0 is

Hide | Show

જવાબ : 27 < y < 2


Solve: 3x + 2 ≥ −x + 18

Hide | Show

જવાબ : 3x+2≥−x+18

⇒3x+x≥18−2  

⇒4x≥16

⇒x≥4  

Hence, the solution set of the given in equation is [4, ∞)


Solve : 3x + 8 ≥ −x + 18

Hide | Show

જવાબ : 3x+8≥−x+18

⇒3x+x≥18−8   

⇒4x≥10

⇒x≥5/2   

Hence, the solution set of the given in equation is [5/2, ∞).


Solve: 12x < 50, when x 

Hide | Show

જવાબ : We have, 12x<50

x<50/12                 

 [Dividing both the sides by 12]

x<25/6 

X-ray Then, the solution of the given in equation is (−∞, 25/6).


Solve: 12x < 50, when x  Z

Hide | Show

જવાબ : We have, 12x<50

x<50/12                  [Dividing both the sides by 12]

x<25/6 

X Z Then, the solution of the given in equation is {..........−3, −2, −1, 0, 1, 2, 3, 4}.


Solve: 12x < 50, when
x  N

Hide | Show

જવાબ : We have, 12x<50

x<50/12                  [Dividing both the sides by 12]

x<25/6 

xN Then, the solution of the given inequation is  {1, 2, 3, 4}.


Solve: −4x > 30, when x  R

Hide | Show

જવાબ : −4x>30 x<−30/4  

x<−15/2

xR Then, the solution of the given inequation is (−∞, −152).


Solve: −4x > 30, when x  Z

Hide | Show

જવાબ : −4x>30

x<−30/4     

x<−15/2

xZ Then, the solution of the given inequation is {..........−9, −8}.


Solve: −4x > 30, when x  N

Hide | Show

જવાબ : −4x>30

x<−30/4 

x<−15/2  

 xN Then, the solution of the given inequation is ϕ.


Solve: 4x − 2 < 8, when x  R

Hide | Show

જવાબ : We have, 4x−2<8

4x<8+2 

4x<10

x<10/4

x<5/2

xR Then, the solution of the given inequation is (−∞, 52).


Solve: 4x − 2 < 8, when x  Z

Hide | Show

જવાબ : We have, 4x−2<8

4x<8+2 

4x<10

x<10/4

x<5/2

xZ Then, the solution of the given inequation is {.......−3, −2, −1, 0, 1, 2}.


Solve: 4x − 2 < 8, when x  N

Hide | Show

જવાબ : We have, 4x−2<8

4x<8+2 

4x<10

x<10/4

x<5/2

 xN Then, the solution of the given inequation is {1, 2}.


Solve :  x + 5 > 4x − 1

Hide | Show

જવાબ : We have, x+5>4x−1

5+1 > 4x−x

6>3x

3x<6

x<2

x(−∞, 2)

Hence, the solution set of the given inequation is (−∞, 2).


Solve :  x + 5 > 4x − 13

Hide | Show

જવાબ : We have, x+5>4x−13

5+13 > 4x−x           

18>3x

3x<18

x<6

x(−∞, 6)

Hence, the solution set of the given inequation is (−∞, 6).


Solve :  x + 3 > 4x − 12

Hide | Show

જવાબ : We have, x+3>4x−12

3+12 > 4x−x                 (Transposing x to the RHS and −10 to the LHS)

15>3x

3x<15

x<5

x(−∞, 5)

Hence, the solution set of the given inequation is (−∞, 5).


Solve :  x + 5 > 4x − 7

Hide | Show

જવાબ : We have, x+5>4x−75+7 > 4x−x                 (Transposing x to the RHS and −10 to the LHS)

12>3x

3x<12

x<4

x(−∞, 4)

Hence, the solution set of the given inequation is (−∞, 4).


Solve :  x − 7 > x+1

Hide | Show

જવાબ : 3x−7>x+1

3x−x>7+1

2x>8

x>4 

Hence, the  solution set of the given inequation is (4, ∞)


Solve :  3x − 7 > x+3

Hide | Show

જવાબ : 3x−7>x+3

3x−x>7+3

2x>10

x>5 

Hence, the  solution set of the given inequation is (5, ∞)


Solve :  3x − 7 > x-1

Hide | Show

જવાબ : 3x−7>x-1

3x−x>7-1

2x>6

x>3 

Hence, the  solution set of the given inequation is (3, ∞)


Solve :  3x − 7 > x=5

Hide | Show

જવાબ : 3x−7>x+5

3x−x>5+7

2x>12

x>6

Hence, the  solution set of the given inequation is (6, ∞)


Solve :  3x − 7 > x

Hide | Show

જવાબ : 3x−7>x

3x−x>7

2x>7

x>7/2 

Hence, the  solution set of the given inequation is (7/2, ∞)


There are No Content Availble For this Chapter

when x 

1

12x < 50

A

(25 , ∞)

2

12x > 50

B

(−∞,25)

3

2x < 50

C

(25/6 , ∞)

4

2x > 50

D

(−∞,25/6)

Hide | Show

જવાબ :

1-D, 2-C, 3-B, 4-A

when x 

1

−4x > 30

A

( −15/2 , ∞)

2

4x > 30

B

(15/2 , ∞)

3

−4x < 30

C

(−∞, −15/2)

4

4x < 30

D

(−∞, 15/2)

Hide | Show

જવાબ :

1-C, 2-D, 3-A, 4-B

when x  Z

1

12x < 50

A

{26, 27,}

2

12x > 50

B

{..........−3, −2, −1, 0, 1, 2, 3, 4}

3

2x < 50

C

{5, 6, 7,}

4

2x > 50

D

{..........−3, −2, −1, 0, 1, 2, 3…. 24}

Hide | Show

જવાબ :

1-B, 2-C, 3-D, 4-A

−5x > 31

1

x  R

A

{….., -8,-7}

2

x  Z

B

Φ

3

x  N

C

(−∞ , -7)

Hide | Show

જવાબ :

1-C, 2-A, 3-B

when x  Z

1

−4x > 30

A

{……, 6, 7}

2

4x > 30

B

{-7,-6,}

3

−4x < 30

C

{..........−9, −8}

4

4x < 30

D

{8, 9,}

Hide | Show

જવાબ :

1-C, 2-D, 3-B, 4-A

N

1

12x < 50

A

{26, 27,}

2

12x > 50

B

{1, 2, 3, ……., 24}

3

2x < 50

C

{5, 6,}

4

2x > 50

D

{1, 2, 3, 4}

Hide | Show

જવાબ :

1-D, 2-C, 3-B, 4-A

7x > -34

1

x  R

A

{-4, -3, -2…….}

2

x  Z

B

{1, 2, 3…..}

3

x  N

C

(-4, ∞)

Hide | Show

જવાબ :

1-C, 2-A, 3-B

-4x>0

1

x  R

A

Φ

2

x  Z

B

{…., -2,-1}

3

x  N

C

(-∞, -1)

Hide | Show

જવાબ :

1-C, 2-B, 3-A

x  N

1

−4x > 30

A

{8, 9,}

2

4x > 30

B

{1, 2, …….7 }

3

4x < 30

C

{1, 2}

4

14x < 30

D

Φ

Hide | Show

જવાબ :

1-D, 2-A, 3-B, 4-C

-8x > 6

1

x  R

A

Φ

2

x  Z

B

(-∞, -1)

3

x  N

C

{…., -2,-1}

Hide | Show

જવાબ :

1-B, 2-C, 3-A

Download PDF

Take a Test

Choose your Test :

Linear Equations

Math

Browse & Download CBSE Books For Class 11 All Subjects

The GSEB Books for class 10 are designed as per the syllabus followed Gujarat Secondary and Higher Secondary Education Board provides key detailed, and a through solutions to all the questions relating to the GSEB textbooks.

The purpose is to provide help to the students with their homework, preparing for the examinations and personal learning. These books are very helpful for the preparation of examination.

For more details about the GSEB books for Class 10, you can access the PDF which is as in the above given links for the same.