જવાબ : Here p = 3, q = -k, r = 6
Sum of the zeroes, (α + β) = -q/p= 3 …..(given)
⇒ = 3
⇒ k = 9
જવાબ :
જવાબ : p(x) = (k2 – 14) x2 – 2x – 12
Here a = k2 – 14, b = -2, c = -12
Sum of the zeroes, (α + β) = 1 …[Given in question]
⇒ = 1
⇒ = 1
⇒ k2 – 14 = 2
⇒ k2 = 16
⇒ k = ±4
જવાબ : Quadratic polynomial is x2 – (Sum)x + (Product) = 0
⇒ x2 – (-6)x + 5 = 0
⇒ x2 + 6x + 5 = 0
જવાબ : x2 + 9x + 20 is the required polynomial.
જવાબ : Let α and be the zeroes of P(x).
P(a) = ax2 + bx + c …(given in the question)
Product of zeroes =
⇒ α × =
⇒ 1 =
⇒ a = c
Coefficient of x2 = Constant term
જવાબ : Sum of zeroes = (3 + √2) + (3 – √2) = 6
Product of zeroes = (3 + √2) x (3 – √2) = (3)2 – (√2)2 = 9 – 2 = 7
Quadratic polynomial = x2 – 6x + 7
જવાબ : Sum of zeroes = √3
Product of zeroes =
Quadratic polynomial =
જવાબ : Quadratic polynomial is
x2 – (Sum of zeroes) x + (Product of zeroes)
= x2 – (0)x + (-√2)
= x2 – √2
જવાબ :
જવાબ : We have, 2x2 – 5x – 3 = 0
= 2x2 – 6x + x – 3
= 2x(x – 3) + 1(x – 3)
= (x – 3) (2x + 1)
Zeroes are:
x – 3 = 0 or 2x + 1 = 0
⇒ x = 3 or x =
Since the zeroes of required polynomial is double of given polynomial.
Zeroes of the required polynomial are:
3 × 2, ( × 2), i.e., 6, -1
Sum of zeroes, S = 6 + (-1) = 5
Product of zeroes, P = 6 × (-1) = -6
Quadratic polynomial is x2 – Sx + P
⇒ x2 – 5x – 6 …(a)
Comparing (a) with x2 + px + q
p = -5, q = -6
જવાબ : In case of division of a polynomial by another polynomial, the degree of the remainder (polynomial) is always less than that of the divisor. (x – 2) can not be the remainder when p(x) is divided by (2x + 3) as the degree is the same.
જવાબ : = a(25x2 – 30x + 4 ) … where [a є R
જવાબ : Sum of zeroes = (-2) + (-5) = -7
Product of zeroes = (-2)(-5) = 10
Quadratic polynomial = x2 – (-7)x + 10
= x2 + 7x + 10
Verification:
Here a = 1, b = 7, c = 10
Sum of zeroes = (-2) + (-5) = 7
જવાબ : We have, 3x2 – 75
= 3(x2 – 25)
= 3(x2 – 52)
= 3(x – 5)(x + 5)
Zeroes are:
x – 5 = 0 or x + 5 = 0
x = 5 or x = -5 ------(1)
Verification:
Here a = 3, b = 0, c = -75
Sum of the zeroes = 5 + (-5) = 0 [from eq.1]
જવાબ : p(x) = 2x2 – x – 6 …[Given in question]
= 2x2 – 4x + 3x – 6
= 2x (x – 2) + 3 (x – 2)
= (x – 2) (2x + 3)
Zeroes are:
x – 2 = 0 or 2x + 3 = 0
x = 2 or x =
Verification:
Here a = 2, b = -1, c = -6
જવાબ :
(2x – 3) should be subtracted from x4 + 2x3 – 13x2 – 12x + 21 as it is the remainder
જવાબ : Let Sum of zeroes (α + β) = S = -8 …[Given in question]
Product of zeroes (αβ) = P = 12 …[Given in question]
Quadratic polynomial is x2 – Sx + P
= x2 – (-8)x + 12
= x2 + 8x + 12
= x2 + 6x + 2x + 12
= x(x + 6) + 2(x + 6)
= (x + 2)(x + 6)
Zeroes are:
x + 2 = 0 or x + 6 = 0
x = -2 or x = -6
જવાબ : Quadratic polynomial = x2 – Sx + P
જવાબ :
Remainder = 1
Quotient = (3x – 1)
Verification:
Divisor × Quotient + Remainder
= (x + 2) × (3x – 1) + 1
= 3x2 – x + 6x – 2 + 1
= 3x2 + 5x – 1
= Dividend
જવાબ : -2
જવાબ : 16
જવાબ : 4/3
જવાબ : b – a + 1
જવાબ : c/a
જવાબ : a = 0, b = – 6
જવાબ : 3
જવાબ : Infinite
જવાબ : Both Negative
જવાબ : 4q+10+r=0 -----(a)
q/4 +5/2 +r=0 or q+10+4r=0 -----(b)
Subtracting a from b
3q-3r=0
q=r
જવાબ : a & c
જવાબ : a=1,b=√2 or -√2
જવાબ : K=5 and a=-5
જવાબ : (x-11)(x-2)
જવાબ : -1/2
જવાબ : 341
જવાબ : 1
જવાબ : (2x+1)(4x2-2x+1)
જવાબ : (x-1)(x-10)(x-12)
જવાબ : (3x-1)(x-1)(x+1)
જવાબ : (x+6)(x+3)
જવાબ : True
જવાબ : False
જવાબ : True
જવાબ : True
જવાબ : True
જવાબ : True
જવાબ : True
જવાબ : True
જવાબ : True
જવાબ :
Divisor [D]= (2x2 + 3x + 1) Quotient [Q] = (2x – 2)જવાબ : Let,the polynomial P(x) = x3 – 3√5 x2 – 5x + 15√5
x – √5 is a factor of the given polynomial.
Put x = -√5,
Another zero:
x – 3√5 = 0 ⇒ x = 3√5
All the zeroes of P(x) are -√5, √5 and 3√5.
જવાબ : Given two zeroes are -2 and -3.
(x + 2)(x + 3) = x2 + 3x + 2x + 6 = x2 + 5x + 6
Dividing the given equation with x2 + 5x + 6, we get
x4 + 5x3 + 4x2 – 10x – 12
= (x2 + 5x + 6)(x2 – 2)
= (x + 2)(x + 3)(x – √2 )(x + √2 )
Other zeroes are:
x – √2 = 0 or x + √2 = 0
x = √2 or x = -√2
જવાબ :
જવાબ : p(x) = x3 – 2x2 + mx + 5,
When x – 2,
p(2) = (2)3 – 2(2)2 + m(2) + 5
⇒ 11 = 8 – 8 + 2m + 5
⇒ 11 – 5 = 2m
⇒ 6 = 2m
⇒ m = 3
Let q(x) = x3 + mx2 + 3x + 1
= x3 + 3x2 + 3x + 1
= x3 + 1 + 3x2 + 3x
= (x)3 + (1)3 + 3x(x + 1)
= (x + 1)3
= (x + 1) (x + 1) (x + 1) …[∵ a3 + b3 + 3ab (a + b) = (a + b)3]
All zeroes are:
x + 1 = 0 ⇒ x = -1
x + 1 = 0 ⇒ x = -1
x + 1 = 0 ⇒ x = -1
Hence zeroes are -1, -1 and -1.
જવાબ : We have, p(x) = kx2 + 4x + 4
Here a = k, b = 4, c = 4
⇒ 24k2 = 16 – 8k
⇒ 24k2 + 8k – 16 = 0
⇒ 3k2 + k – 2 = 0 …[Dividing equation by 8]
⇒ 3k2 + 3k – 2k – 2 = 0
⇒ 3k(k + 1) – 2(k + 1) = 0
⇒ (k + 1)(3k – 2) = 0
⇒ k + 1 = 0 or 3k – 2 = 0
⇒ k = -1 or k =
જવાબ : Given , p(x) = 2x2 + 5x + k
Here a = 2, b = 5, c = k
જવાબ :
Remainder = (15x – 14).
જવાબ :
If x4 + x3 + 8x2 + ax – b is divisible by x2 + 1
=> Remainder = 0
(a – 1)x – b – 7 = 0
(a – 1)x + (-b – 7) = 0 . x + 0
a – 1 = 0, -b – 7 = 0
a = 1, b = -7
a = 1, b = -7
જવાબ :
જવાબ :
Remainder = 2x + 3
ax + b = 2x + 3
a = 2 and b = 3
જવાબ : Let s and 1/ s be the zeroes of P(x).
P(x) = ax2 + bx + c …(given in question)
Product of zeroes = c/a
⇒ s × 1/s = c/a
⇒ 1 = c/a
જવાબ : Sum of zeroes = (3 + √2) + (3 – √2) = 6
Product of zeroes = (3 + √2) x (3 – √2) = (3)2 – (√2)2 = 9 – 2 = 7
Quadratic polynomial = x2 – 6x + 7
જવાબ : Sum of zeroes = √3
Product of zeroes = 1/√3
જવાબ : p(x) = 2x2 – x – 6 …[Given in question]
= 2x2 – 4x + 3x – 6
= 2x (x – 2) + 3 (x – 2)
= (x – 2) (2x + 3)
Zeroes are:
x – 2 = 0 or 2x + 3 = 0
x = 2 or x = -3 / 2
Verification:
Here a = 2, b = -1, c = -6
જવાબ : We have, 2x2 – 5x – 3 = 0
= 2x2 – 6x + x – 3
= 2x(x – 3) + 1(x – 3)
= (x – 3) (2x + 1)
Zeroes are:
x – 3 = 0 or 2x + 1 = 0
⇒ x = 3 or x = -1 /2
જવાબ : Given equation, √3 x2 – 8x + 4√3=0
જવાબ :
જવાબ : Sum of zeroes = (-2) + (-5) = -7
Product of zeroes = (-2)(-5) = 10
Quadratic polynomial is x2 – Sx + P = 0
= x2 – (-7)x + 10
= x2 + 7x + 10
Verification:
Here a = 1, b = 7, c = 10
Sum of zeroes = (-2) + (-5) = 7
જવાબ : 3x2 – 75
= 3(x2 – 25)
= 3(x2 – 52)
= 3(x – 5)(x + 5)
Zeroes are x – 5 = 0 or x + 5 = 0
x = 5 or x = -5
Verification:
Here a = 3, b = 0, c = -75
Sum of the zeroes = 5 + (-5) = 0
જવાબ :
1-C, 2-D, 3-A, 4-B
Equations and Root
1 |
X2+ 10x + 25 |
A |
-5 & 5 |
2 |
X2-5x-50 |
B |
5 & 5 |
3 |
X2 -25 |
C |
-2 & 20 |
4 |
X2+18x-40 |
D |
-10 & 5 |
જવાબ :
1-B, 2-D, 3-A, 4-C
Equations and Root
1 |
X2+ 31x + 30 |
A |
-20 & -8 |
2 |
X2-28x+160 |
B |
-7 & 7 |
3 |
X2 -49 |
C |
2 & 3 |
4 |
X2+5x+ 6 |
D |
1 & 30 |
જવાબ :
1-D, 2-A, 3-B, 4-C
Degree of polynomial
1 |
( X2 +x -25) / (x+1) |
A |
6 |
2 |
(x+1)(x5 + x2 + 31) |
B |
1 |
3 |
X49/x7 |
C |
10 |
4 |
(x2+1)5 |
D |
42 |
Hide | Show
જવાબ :
1-B, 2-A, 3-D, 4-C
Equations and Root
1 |
X2 + 16x + 60 |
A |
-20 & 4 |
2 |
X2 + 16x – 80 |
B |
6 & 10 |
3 |
X2 -16x -80 |
C |
8 & 10 |
4 |
X2 + 18x + 80 |
D |
20 & -4 |
Hide | Show
જવાબ :
1-B, 2-D, 3-A, 4-C
જવાબ :
1-B, 2-A, 3-D,4-D
Equations and Root
1 |
X2 + 12x + 36 |
A |
-6 & -6 |
2 |
X2 + 12x – 160 |
B |
6 & 6 |
3 |
X2 -12x + 36 |
C |
-14 & 2 |
4 |
X2 -12x – 28 |
D |
20 & -8 |
જવાબ :
1-B, 2-D, 3-A, 4-C
Equations and Root
1 |
X2 + 17x + 30 |
A |
18 & -1 |
2 |
X2 + 17x – 18 |
B |
15 & 2 |
3 |
X2 -17x + 16 |
C |
-14 & -3 |
4 |
X2 -17x + 42 |
D |
-16 & -1 |
જવાબ :
1-B, 2-A, 3-D, 4-C
Equations and Root
1 |
X2 + 11x + 10 |
A |
-12 & 1 |
2 |
X2 + 11x + 18 |
B |
-13 & 2 |
3 |
X2 -11x -12 |
C |
10 & 1 |
4 |
X2 -11x - 26 |
D |
9 & 2 |
જવાબ :
1-C, 2-D, 3-A, 4-B
Equations and Root
1 |
X2 + 10x + 25 |
A |
15 & -5 |
2 |
X2 + 10x - 45 |
B |
5 & 5 |
3 |
X2 -10x - 96 |
C |
-14 & -3 |
4 |
X2 -10x + 25 |
D |
-5 & -5 |
Hide | Show
જવાબ :
1-B, 2-A, 3-D,4-D
Math
Chapter 02 : Polynomials
The GSEB Books for class 10 are designed as per the syllabus followed Gujarat Secondary and Higher Secondary Education Board provides key detailed, and a through solutions to all the questions relating to the GSEB textbooks.
The purpose is to provide help to the students with their homework, preparing for the examinations and personal learning. These books are very helpful for the preparation of examination.
For more details about the GSEB books for Class 10, you can access the PDF which is as in the above given links for the same.