CBSE Solutions for Class 10 English

GSEB std 10 science solution for Gujarati check Subject Chapters Wise::

If the sum of zeroes of the quadratic polynomial 3x2 – kx + 6 is 3, then find the value of k. (2012)

Hide | Show

જવાબ : Here p = 3, q = -k, r = 6
Sum of the zeroes, (α + β) = -q/p= 3 …..(given)
 \frac { -(-k) }{ 3 } = 3
k = 9


If α and β are the zeroes of the polynomial ay2 + by + c, find the value of α2 + β2.

Hide | Show

જવાબ : Important Questions for Class 10 Maths Chapter 2 Polynomials Q2


If the sum of the zeroes of the polynomial p(x) = (k– 14) x2 – 2x – 12 is 1, then find the value of k. (2017 D)

Hide | Show

જવાબ : p(x) = (k2 – 14) x2 – 2x – 12
Here a = k2 – 14, b = -2, c = -12
Sum of the zeroes, (α + β) = 1 …[Given in question]
⇒ \frac { -b }{ a } = 1
⇒ \frac { -\left( -2 \right) }{ { k }^{ 2 }-14 } = 1
⇒ k2 – 14 = 2
⇒ k2 = 16
⇒ k = ±4


If α and β are the zeroes of a polynomial such that α + β = -6 and αβ = 5, then find the polynomial. (2016 D)

Hide | Show

જવાબ : Quadratic polynomial is x2 – (Sum)x + (Product) = 0
⇒ x2 – (-6)x + 5 = 0
⇒ x2 + 6x + 5 = 0


Question 5.
A quadratic polynomial, whose zeroes are -4 and -5, is …. (2016 D)

Hide | Show

જવાબ : x2 + 9x + 20 is the required polynomial.


Find the condition that zeroes of polynomial p(x) = ax2 + bx + c are reciprocal of each other. (2017 OD)

Hide | Show

જવાબ : Let α and \frac { 1 }{ \alpha } be the zeroes of P(x).
P(a) = ax2 + bx + c …(given in the question)
Product of zeroes = \frac { c }{ a }
⇒ α × \frac { 1 }{ \alpha } = \frac { c }{ a }
⇒ 1 = \frac { c }{ a }
⇒ a = c
Coefficient of x2 = Constant term


Form a quadratic polynomial whose zeroes are 3 + √2 and 3 – √2. (2012)

Hide | Show

જવાબ : Sum of zeroes = (3 + √2) + (3 – √2) = 6
Product of zeroes = (3 + √2) x (3 – √2) = (3)2 – (√2)2 = 9 – 2 = 7
Quadratic polynomial = x2 – 6x + 7


Find a quadratic polynomial, the stun and product of whose zeroes are √3 and \frac { 1 }{ \surd 3 } respectively. (2014)

Hide | Show

જવાબ : Sum of zeroes = √3
Product of zeroes = \frac { 1 }{ \surd 3 }
Quadratic polynomial =
Important Questions for Class 10 Maths Chapter 2 Polynomials Q8


Find a quadratic polynomial, the sum and product of whose zeroes are 0 and -√2 respectively. (2015)

Hide | Show

જવાબ : Quadratic polynomial is
x2 – (Sum of zeroes) x + (Product of zeroes)
= x2 – (0)x + (-√2)
= x2 – √2


Find the zeroes of the quadratic polynomial √3 x2 – 8x + 4√3. (2013)
 

Hide | Show

જવાબ : Important Questions for Class 10 Maths Chapter 2 Polynomials Q10


If the zeroes of the polynomial x2 + px + q are double in value to the zeroes of 2x2 – 5x – 3, find the value of p and q. (2012)

Hide | Show

જવાબ : We have, 2x2 – 5x – 3 = 0
= 2x2 – 6x + x – 3
= 2x(x – 3) + 1(x – 3)
= (x – 3) (2x + 1)
Zeroes are:
x – 3 = 0 or 2x + 1 = 0
⇒ x = 3 or x = \frac { -1 }{ 2 }
Since the zeroes of required polynomial is double of given polynomial.
Zeroes of the required polynomial are:
3 × 2, (\frac { -1 }{ 2 } × 2), i.e., 6, -1
Sum of zeroes, S = 6 + (-1) = 5
Product of zeroes, P = 6 × (-1) = -6
Quadratic polynomial is x2 – Sx + P
⇒ x2 – 5x – 6 …(a)
Comparing (a) with x2 + px + q
p = -5, q = -6


Can (x – 2) be the remainder on division of a polynomial p(x) by (2x + 3)? Justify your answer. (2016 OD)

Hide | Show

જવાબ : In case of division of a polynomial by another polynomial, the degree of the remainder (polynomial) is always less than that of the divisor. (x – 2) can not be the remainder when p(x) is divided by (2x + 3) as the degree is the same.


Find a quadratic polynomial whose zeroes are \frac { 3+\surd 5 }{ 5 } and \frac { 3-\surd 5 }{ 5 }. (2013)

Hide | Show

જવાબ : Important Questions for Class 10 Maths Chapter 2 Polynomials Q13               = a(25x2 – 30x + 4 )                                           … where [a є R


Find the quadratic polynomial whose zeroes are -2 and -5. Verify the relationship between zeroes and coefficients of the polynomial. (2013)

Hide | Show

જવાબ : Sum of zeroes = (-2) + (-5) = -7
Product of zeroes = (-2)(-5) = 10
Quadratic polynomial = x2 – (-7)x + 10
= x2 + 7x + 10
Verification:
Here a = 1, b = 7, c = 10
Sum of zeroes = (-2) + (-5) = 7
Important Questions for Class 10 Maths Chapter 2 Polynomials Q14
Important Questions for Class 10 Maths Chapter 2 Polynomials Q14.1


Find the zeroes of the quadratic polynomial 3x2 – 75 and verify the relationship between the zeroes and the coefficients. (2014)

Hide | Show

જવાબ : We have, 3x2 – 75
= 3(x2 – 25)
= 3(x2 – 52)
= 3(x – 5)(x + 5)
Zeroes are:
x – 5 = 0 or x + 5 = 0
x = 5 or x = -5 ------(1)
Verification:
Here a = 3, b = 0, c = -75
Sum of the zeroes = 5 + (-5) = 0       [from eq.1]
Important Questions for Class 10 Maths Chapter 2 Polynomials Q15


Find the zeroes of p(x) = 2x2 – x – 6 and verify the relationship of zeroes with these co-efficients. (2017 OD)

Hide | Show

જવાબ : p(x) = 2x2 – x – 6 …[Given in question]
= 2x2 – 4x + 3x – 6
= 2x (x – 2) + 3 (x – 2)
= (x – 2) (2x + 3)
Zeroes are:
x – 2 = 0 or 2x + 3 = 0
x = 2 or x = \frac { -3 }{ 2 }
Verification:
Here a = 2, b = -1, c = -6
Important Questions for Class 10 Maths Chapter 2 Polynomials Q16


What must be subtracted from the polynomial f(x) = x4 + 2x3 – 13x2 – 12x + 21 so that the resulting polynomial is exactly divisible by x2 – 4x + 3? (2012, 2017 D)

Hide | Show

જવાબ : Important Questions for Class 10 Maths Chapter 2 Polynomials Q17
(2x – 3) should be subtracted from x4 + 2x3 – 13x2 – 12x + 21 as it is the remainder


Find a quadratic polynomial, the sum and product of whose zeroes are -8 and 12 respectively. Hence find the zeroes. (2014)

Hide | Show

જવાબ : Let Sum of zeroes (α + β) = S = -8 …[Given in question]
Product of zeroes (αβ) = P = 12 …[Given in question]
Quadratic polynomial is x2 – Sx + P
= x2 – (-8)x + 12
= x2 + 8x + 12
= x2 + 6x + 2x + 12
= x(x + 6) + 2(x + 6)
= (x + 2)(x + 6)
Zeroes are:
x + 2 = 0 or x + 6 = 0
x = -2 or x = -6


Find a quadratic polynomial, the sum and product of whose zeroes are 0 and \frac { -3 }{ 5 } respectively. Hence find the zeroes. (2015)

Hide | Show

જવાબ : Quadratic polynomial = x2 – Sx + P
Important Questions for Class 10 Maths Chapter 2 Polynomials Q21​​​​​​​


Divide 3x2 + 5x – 1 by x + 2 and verify the division algorithm. (2013 OD)

Hide | Show

જવાબ : Important Questions for Class 10 Maths Chapter 2 Polynomials Q25
Remainder = 1
Quotient = (3x – 1)
Verification:
Divisor × Quotient + Remainder
= (x + 2) × (3x – 1) + 1
= 3x– x + 6x – 2 + 1
= 3x2 + 5x – 1
= Dividend


If sum of the squares of zeroes of the quadratic polynomial 6x2 + x + l is 25/36, the value of l is

Hide | Show

જવાબ : -2


The value of k for which the polynomial x3 + 4x2 –kx + 8 is exactly divisible by (x – 2) is

Hide | Show

જવાબ : 16


If one of the zeroes of the quadratic polynomial (k – 1)x2 + mx + 1 is –3, then the value of m is

Hide | Show

જવાબ : 4/3


If one of the zeroes of the cubic polynomial x3 + ax2 + bx + c is –1, then the

Product of the other two zeroes is

Hide | Show

જવાબ : b – a + 1


Given that one of the zeroes of the cubic polynomial ax3 + bx2 + cx + d is zero, the product of the other two zeroes is

Hide | Show

જવાબ : c/a


If the zeroes of the quadratic polynomial x2 + (a + 1)x + b are 2 and –3, then a&b ?

Hide | Show

જવાબ : a = 0, b = – 6


The degree of the polynomial (x + 1)(x2 – x – x4 +1) is:

Hide | Show

જવાબ : 3


The number of polynomials having zeroes as –2 and 5 is ______________

Hide | Show

જવાબ : Infinite


Sign of the zeroes of the quadratic polynomial x2 + 99x + 127 are

Hide | Show

જવાબ : Both Negative


If (x - 2) and [x - ½ ] are the factors of the polynomials qx2 + 5x + r prove that q = r

Hide | Show

જવાબ : 4q+10+r=0 -----(a)
q/4 +5/2 +r=0 or q+10+4r=0 -----(b)
Subtracting a from b
3q-3r=0
q=r


If the zeroes of the quadratic polynomial ax2 + bx + c, c ≠ 0 are equal, then which constant should have same signs?

Hide | Show

જવાબ : a & c


A cubic polynomial is given below
S(x) =x3 -3x2+x+1
The zeroes of the polynomial are given as (a-b) ,a  and (a+b). What is the value a and b

Hide | Show

જવાબ : a=1,b=√2 or -√2


p(x) = x4 -6x3 +16x2 -25x +10
q(x) = x2-2x+k
It is given
p(x) = r(x) q(x) + (x+m)
Find the value of k and m

Hide | Show

જવાબ : K=5 and a=-5


If the zeroes of the quadratic equation are 11 and 2 ,what is expression for quadratic?

Hide | Show

જવાબ : (x-11)(x-2)


Z(x) = px2+(p-2)x +2. If  2 is the zero of this polynomial,what is the value of p

Hide | Show

જવાબ : -1/2


If p and q are the zeroes of the polynomial  x2-11x +30, Find the value of p3 + b3

Hide | Show

જવાબ : 341


Find the remainder  when x4+x3-2x2+x is divided by x-1

Hide | Show

જવાબ : 1


Factorize the following : 1+8x3

Hide | Show

જવાબ : (2x+1)(4x2-2x+1)


Factorize the following : x3-23x2+142x-120

Hide | Show

જવાબ : (x-1)(x-10)(x-12)


Factorize the following : 3x3 -x2-3x+1

Hide | Show

જવાબ : (3x-1)(x-1)(x+1)


Factorize the following : x2 +9x+18

Hide | Show

જવાબ : (x+6)(x+3)


State whether the statement is true or  false :- Graph of constant polynomial never meets x axis

Hide | Show

જવાબ : True


State whether the statement is true or  false :- Graph of polynomial (x2-1) meets the  x-axis at one point

Hide | Show

જવાબ : False


State whether the statement is true or  false :- The degree of zero polynomial is not defined

Hide | Show

જવાબ : True


State whether the statement is true or  false :- 1,2 are the zeroes of x2-3x+2

Hide | Show

જવાબ : True


State whether the statement is true or  false :- A binomial may have degree 6

Hide | Show

જવાબ : True


State whether the statement is true or  false :- Every real number is the zero’s of zero polynomial

Hide | Show

જવાબ : True


State whether the statement is true or  false :- Every linear polynomial has only one zero

Hide | Show

જવાબ : True


State whether the statement is true or  false :- The factor of 3x2 -x-4 are  (x+1)(3x-4)

Hide | Show

જવાબ : True


State whether the statement is true or  false :- P(x) =x-1 and g(x) =x2-2x +1 .  p(x) is a factor of g(x)

 

Hide | Show

જવાબ : True


Divide 4x3 + 2x2 + 5x – 6 by 2x2 + 1 + 3x and verify the division algorithm. (2013)

Hide | Show

જવાબ : Important Questions for Class 10 Maths Chapter 2 Polynomials Q28

Divisor [D]= (2x2 + 3x + 1)

Quotient [Q] = (2x – 2)
Remainder [R] = (9x – 4)
Verification:
[D] × [Q] + [R]
= (2x2 + 3x + 1) × (2x – 2) + 9x – 4
= 4x3 – 4x2 + 6x2 – 6x + 2x – 2 + 9x – 4
= 4x3 + 2x2 + 5x – 6
= Dividend


Given that x – √5 is a factor of the polynomial x3 – 3√5 x2 – 5x + 15√5, find all the zeroes of the polynomial. (2012, 2016)

Hide | Show

જવાબ : Let,the polynomial  P(x) = x3 – 3√5 x2 – 5x + 15√5
x – √5 is a factor of the given polynomial.
Put x = -√5,
Important Questions for Class 10 Maths Chapter 2 Polynomials Q29
Another zero:
x – 3√5 = 0 x = 3√5
All the zeroes of P(x) are -√5, √5 and 3√5.


If a polynomial x4 + 5x3 + 4x2 – 10x – 12 has two zeroes as -2 and -3, then find the other zeroes. (2014)

Hide | Show

જવાબ : Given two zeroes are -2 and -3.
(x + 2)(x + 3) = x2 + 3x + 2x + 6 = x2 + 5x + 6
Dividing the given equation with x2 + 5x + 6, we get
Important Questions for Class 10 Maths Chapter 2 Polynomials Q30
x4 + 5x+ 4x2 – 10x – 12
= (x2 + 5x + 6)(x2 – 2)
= (x + 2)(x + 3)(x – √2 )(x + √2 )
Other zeroes are:
x – √2 = 0 or x + √2 = 0
x = √2 or x = -√2


Find all the zeroes of the polynomial 8x4 + 8x3 – 18x2 – 20x – 5, if it is given that two of its zeroes are \sqrt { \frac { 5 }{ 2 } } and -\sqrt { \frac { 5 }{ 2 } }. (2014, 2016 D)

Hide | Show

જવાબ : Important Questions for Class 10 Maths Chapter 2 Polynomials Q31
Important Questions for Class 10 Maths Chapter 2 Polynomials Q31.1


If p(x) = x3 – 2x2 + mx + 5 is divided by (x – 2), the remainder is 11. Find m. Hence find all the zeroes of x3 + mx2 + 3x + 1.

Hide | Show

જવાબ : p(x) = x3 – 2x2 + mx + 5,
When x – 2,
p(2) = (2)3 – 2(2)2 + m(2) + 5
11 = 8 – 8 + 2m + 5
11 – 5 = 2m
6 = 2m
m = 3
Let q(x) = x3 + mx2 + 3x + 1
= x3 + 3x2 + 3x + 1
= x3 + 1 + 3x2 + 3x
= (x)3 + (1)3 + 3x(x + 1)
= (x + 1)3
= (x + 1) (x + 1) (x + 1) …[ a3 + b3 + 3ab (a + b) = (a + b)3]
All zeroes are:
x + 1 = 0 x = -1
x + 1 = 0 x = -1
x + 1 = 0 x = -1
Hence zeroes are -1, -1 and -1.


If α and β are zeroes of p(x) = kx2 + 4x + 4, such that α2 + β2 = 24, find k. (2013)

Hide | Show

જવાબ : We have, p(x) = kx2 + 4x + 4
Here a = k, b = 4, c = 4
Important Questions for Class 10 Maths Chapter 2 Polynomials Q33
24k2 = 16 – 8k
24k2 + 8k – 16 = 0
3k2 + k – 2 = 0 …[Dividing equation by 8]
3k2 + 3k – 2k – 2 = 0
3k(k + 1) – 2(k + 1) = 0
(k + 1)(3k – 2) = 0
k + 1 = 0 or 3k – 2 = 0
k = -1 or k = \frac { 2 }{ 3 }


If α and β are the zeroes of the polynomial p(x) = 2x2 + 5x + k, satisfying the relation, α2 + β2 + αβ = \frac { 21 }{ 4 } then find the value of k. (2017 OD)

Hide | Show

જવાબ : Given , p(x) = 2x2 + 5x + k
Here a = 2, b = 5, c = k
Important Questions for Class 10 Maths Chapter 2 Polynomials Q34


What must be subtracted from p(x) = 8x4 + 14x3 – 2x2 + 8x – 12 so that 4x2 + 3x – 2 is factor of p(x

Hide | Show

જવાબ : Important Questions for Class 10 Maths Chapter 2 Polynomials Q35
Remainder = (15x – 14).

Hence, Polynomial to be subtracted by (15x – 14).


Find the values of a and b so that x4 + x3 + 8x2 +ax – b is divisible by x2 + 1. (2015)

Hide | Show

જવાબ : Important Questions for Class 10 Maths Chapter 2 Polynomials Q36
If x4 + x3 + 8x2 + ax – b is divisible by x2 + 1
=> Remainder = 0
(a – 1)x – b – 7 = 0
(a – 1)x + (-b – 7) = 0 . x + 0
a – 1 = 0, -b – 7 = 0
a = 1, b = -7
a = 1, b = -7


If a polynomial 3x4 – 4x3 – 16x2 + 15x + 14 is divided by another polynomial x2 – 4, the remainder comes out to be px + q. Find the value of p and q. (2014)

Hide | Show

જવાબ : Important Questions for Class 10 Maths Chapter 2 Polynomials Q37


If the polynomial (x4 + 2x3 + 8x2 + 12x + 18) is divided by another polynomial (x2 + 5), the remainder comes out to be (ax +b ), find the values of a and b.

Hide | Show

જવાબ : Important Questions for Class 10 Maths Chapter 2 Polynomials Q38
Remainder = 2x + 3
ax + b = 2x + 3
a = 2 and b = 3


Find the condition that zeroes of polynomial p(x) = ax2 + bx + c are reciprocal of each other. (2017 OD)

Hide | Show

જવાબ : Let s and 1/ s be the zeroes of P(x).
P(x) = ax2 + bx + c …(given in question)
Product of zeroes = c/a
s × 1/s = c/a
1 = c/a

a = c (Required condition)
Coefficient of x2 = Constant term


Form a quadratic polynomial whose zeroes are 3 + √2 and 3 – √2. (2012)

Hide | Show

જવાબ : Sum of zeroes = (3 + √2) + (3 – √2) = 6
Product of zeroes = (3 + √2) x (3 – √2) = (3)2 – (√2)2 = 9 – 2 = 7
Quadratic polynomial = x2 – 6x + 7


Find a quadratic polynomial, the sum and product of whose zeroes are √3 and 1/√3 respectively. (2014)

Hide | Show

જવાબ : Sum of zeroes = √3
Product of zeroes = 1/√3

Quadratic polynomial = x2 – Sx + P
Important Questions for Class 10 Maths Chapter 2 Polynomials Q8


Find the zeroes of p(x) = 2x2 – x – 6 and verify the relationship of zeroes with these co-efficients. (2017 OD)

Hide | Show

જવાબ : p(x) = 2x2 – x – 6 …[Given in question]
= 2x2 – 4x + 3x – 6
= 2x (x – 2) + 3 (x – 2)
= (x – 2) (2x + 3)
Zeroes are:
x – 2 = 0 or 2x + 3 = 0
x = 2 or x = -3 / 2  
Verification:
Here a = 2, b = -1, c = -6
Important Questions for Class 10 Maths Chapter 2 Polynomials Q16​​​​​​​


If the zeroes of the polynomial x2 + px + q are double in value to the zeroes of 2x2 – 5x – 3, find the value of p and q. (2012)

Hide | Show

જવાબ : We have, 2x2 – 5x – 3 = 0
= 2x2 – 6x + x – 3
= 2x(x – 3) + 1(x – 3)
= (x – 3) (2x + 1)
Zeroes are:
x – 3 = 0 or 2x + 1 = 0
x = 3 or x =  -1 /2

Since the zeroes of required polynomial is double of given polynomial.
Zeroes of the required polynomial are:
3 × 2, -1/2× 2, i.e., 6, -1
Sum of zeroes, S = 6 + (-1) = 5
Product of zeroes, P = 6 × (-1) = -6
Quadratic polynomial is x2 – Sx + P
x2 – 5x – 6 …(A)
Comparing (A) with x2 + px + q
p = -5, q = -6


Find the zeroes of the quadratic polynomial √3 x2 – 8x + 4√3. (2013)

Hide | Show

જવાબ : Given equation, √3 x2 – 8x + 4√3=0
Important Questions for Class 10 Maths Chapter 2 Polynomials Q10


Find a quadratic polynomial whose zeroes are (3+5)/5  & (3-5)/5. (2013)

Hide | Show

જવાબ : Important Questions for Class 10 Maths Chapter 2 Polynomials Q13


Find the quadratic polynomial whose zeroes are -2 and -5. Verify the relationship between zeroes and coefficients of the polynomial. (2013)

Hide | Show

જવાબ : Sum of zeroes = (-2) + (-5) = -7
Product of zeroes = (-2)(-5) = 10
Quadratic polynomial is x2 – Sx + P = 0
= x2 – (-7)x + 10
= x2 + 7x + 10
Verification:
Here a = 1, b = 7, c = 10
Sum of zeroes = (-2) + (-5) = 7
Important Questions for Class 10 Maths Chapter 2 Polynomials Q14
Important Questions for Class 10 Maths Chapter 2 Polynomials Q14.1​​​​​​​


Find the zeroes of the quadratic polynomial 3x2 – 75 and verify the relationship between the zeroes and the coefficients. (2014)

Hide | Show

જવાબ : 3x2 – 75
= 3(x2 – 25)
= 3(x2 – 52)
= 3(x – 5)(x + 5)
Zeroes are x – 5 = 0 or x + 5 = 0
x = 5 or x = -5
Verification:
Here a = 3, b = 0, c = -75
Sum of the zeroes = 5 + (-5) = 0
Important Questions for Class 10 Maths Chapter 2 Polynomials Q15​​​​​​​


There are No Content Availble For this Chapter

Degree of polynomial

1

 x5 +x -25

A

0

2

(x+1)(x3 + x2 + 31)

B

2

3

9

C

5

4

x2+1

D

4

Hide | Show

જવાબ :

1-C, 2-D, 3-A, 4-B

Equations and Root

1

X2+ 10x + 25

A

-5 & 5

2

X2-5x-50

B

5 & 5

3

X2 -25

C

-2 & 20

4

X2+18x-40

D

-10 & 5

Hide | Show

જવાબ :

1-B, 2-D, 3-A, 4-C

Equations and Root

1

X2+ 31x + 30

A

-20 & -8

2

X2-28x+160

B

-7 & 7

3

X2 -49

C

2 & 3

4

X2+5x+ 6

D

1 & 30

Hide | Show

જવાબ :

1-D, 2-A, 3-B, 4-C

Degree of polynomial

1

( X2 +x -25) / (x+1)

A

6

2

(x+1)(x5 + x2 + 31)

B

1

3

X49/x7

C

10

4

(x2+1)5

D

42

 

Hide | Show

જવાબ :

1-B, 2-A, 3-D, 4-C

Equations and Root

1

X2 + 16x + 60

A

-20 & 4

2

X2 + 16x – 80

B

6 & 10

3

X2 -16x -80

C

8 & 10

4

X2 + 18x + 80

D

20 & -4

 

Hide | Show

જવાબ :

1-B, 2-D, 3-A, 4-C

P(x)=5x3 -3x2+7x+1

1

 P(1)

A

1

2

P(0)

B

10

3

P(-1)

C

-65

4

P(-2)

D

-14

Hide | Show

જવાબ :

1-B, 2-A, 3-D,4-D

Equations and Root

1

X2 + 12x + 36

A

-6 & -6

2

X2 + 12x – 160

B

6 & 6

3

X2 -12x + 36

C

-14 & 2

4

X2 -12x – 28

D

20 & -8

Hide | Show

જવાબ :

1-B, 2-D, 3-A, 4-C

Equations and Root

1

X2 + 17x + 30

A

18 & -1

2

X2 + 17x – 18

B

15 & 2

3

X2 -17x + 16

C

-14 & -3

4

X2 -17x + 42

D

-16 & -1

Hide | Show

જવાબ :

1-B, 2-A, 3-D, 4-C

Equations and Root

1

X2 + 11x + 10

A

-12 & 1

2

X2 + 11x + 18

B

-13 & 2

3

X2 -11x -12

C

10 & 1

4

X2 -11x - 26

D

9 & 2

Hide | Show

જવાબ :

1-C, 2-D, 3-A, 4-B

Equations and Root

1

X2 + 10x + 25

A

15 & -5

2

X2 + 10x - 45

B

5 & 5

3

X2 -10x - 96

C

-14 & -3

4

X2 -10x + 25

D

-5 & -5

 

Hide | Show

જવાબ :

1-B, 2-A, 3-D,4-D

Download PDF

Take a Test

Choose your Test :

Polynomials

Math
Chapter 02 : Polynomials

Browse & Download CBSE Books For Class 10 All Subjects

The GSEB Books for class 10 are designed as per the syllabus followed Gujarat Secondary and Higher Secondary Education Board provides key detailed, and a through solutions to all the questions relating to the GSEB textbooks.

The purpose is to provide help to the students with their homework, preparing for the examinations and personal learning. These books are very helpful for the preparation of examination.

For more details about the GSEB books for Class 10, you can access the PDF which is as in the above given links for the same.