જવાબ :
જવાબ : d = a2 – a1 =
= = -3
જવાબ : d = a2 – a1 =
= = -2
જવાબ : d = a2 – a1=
=
જવાબ : d = a2 – a1 =
= = -b
જવાબ : a21 – a7 = 84 …[Given in the question
∴ (a + 20d) – (a + 6d) = 84 …[an = a + (n – 1)d
20d – 6d = 84
14d = 84 ⇒ d = 6
જવાબ : Here, a = 5, d = 9 – 5 = 4, l = 185
9th term from the end = 185 – (9 – 1)4
= 185 – 8 × 4 = 185 – 32 = 153
જવાબ : 40°, 60°, 80°
જવાબ : no
જવાબ : 22nd term
જવાબ : 28th term
જવાબ : Yes
Let 1st term = a, Common difference = d
a4 = 0 a + 3d = 0 ⇒ a = -3d … (A)
To prove: a25 = 3 × a11
a + 24d = 3(a + 10d) …[From (A)
⇒ -3d + 24d = 3(-3d + 10d)
⇒ 21d = 21d
From above, a25 = 3(a11) (Hence proved)
જવાબ : 8, 10, 12,14
Solution:
Let ‘a’ be the 1st term and ‘d’ be the common difference.
જવાબ : Yes
Common difference d = 9 – 4
= 14 – 9 = 5
Given that the last term, l = 254, n = 10
nth term from the end = l – (n – 1) d
∴ 10th term from the end = 254 – (10 – 1) × 5
= 254 – 45 = 209
જવાબ : 6
Solution:
12, 18, 24, …,96
Here,First term a = 12, common diff. d = 18 – 12 = 6, an = 96
a + (n – 1)d = an
∴ 12 + (n – 1)6 = 96
⇒ (n − 1)6 = 96 – 12 = 84
⇒ n – 1 = = 14
⇒ n = 14 + 1 = 15
∴ There are 15 two-digit numbers divisible by 6.
જવાબ : 43
Solution:
203, 210, 217, …, 497
Here, First term a = 203, common diff. d = 210 – 203 = 7, an = 497
∴ a + (n – 1) d = an
203 + (n – 1) 7 = 497
(n – 1) 7 = 497 – 203 = 294
n – 1 = = 42 ∴ n = 42 + 1 = 43
∴ There are 43 natural nos. between 200 and 500 which are divisible by 7.
જવાબ : 30
Solution:
Two-digit numbers divisible by 3 are:
12, 15, 18, …, 99
Here, First term a = 12, common diff. d = 15 – 12 = 3, an = 99
∴ a + (n – 1)d = an
12 + (n – 1) (3) = 99
(n – 1) (3) = 99 – 12 = 87
n – 1 = = 29
∴ n = 29 + 1 = 30
∴ There are 30 such numbers.
જવાબ : Yes
Solution:
“3 digits nos.” are 100, 101, 102, …, 999
3 digits nos. “divisible by 7” are:
105, 112, 119, 126, …, 994
first term a = 105, common diff. d = 7, an = 994, n = ?
As a + (n – 1)d = 994 = an
∴ 105 + (n – 1)7 = 994
(n − 1)7 = 994 – 105
(n – 1) = = 127
∴ n = 127 + 1 = 128
જવાબ : Yes
Solution:
To find: Number of terms of A.P., i.e., n.
A.P. = 108 + 117 + 126 + … + 999
a = 108
d = 117 – 108 = 9
an = 999
a + (n – 1)d = an
∴ 108 + (n – 1) 9 = 999
⇒ (n − 1) 9 = 999 – 108 = 891
⇒ (n − 1) = = 99
∴ n = 99 + 1 = 100
જવાબ : 89
Solution:
Numbers divisible by both 2 and 5 are 110, 120, 130, …, 990.
Here first term a = 110, common diff. d = 120 – 110 = 10, an = 990
As a + (n – 1)d = an = 990
110 + (n – 1)(10) = 990
(n – 1)(10) = 990 – 110 = 880
(n − 1) = = 88
∴ n = 88 + 1 = 89
જવાબ : Yes
જવાબ : True
જવાબ : True
જવાબ : False
જવાબ : True
જવાબ : n=7
જવાબ : 65th
જવાબ : 44th
જવાબ : 6, 2, -2, -6 …….
જવાબ : d=3
જવાબ : n=38 & Sn =6973
જવાબ : n=6 & d=5
જવાબ : T25=S25−S24T25=S25−S24 = [3(25)2 /2] +[13×25]/2−3(24)2/2 + [13×24]/2= 80
જવાબ : The AP formed is 3, 5, 7, 9, .........
જવાબ : middle most terms will 8 and 9
T8=−11+(8−1)4=17T8=−11+(8−1)4= 17
T9=−11+(9−1)4=21T9=−11+(9−1)4= 21
જવાબ : 11(11x−6y)/x+y
જવાબ : 1
જવાબ : True
જવાબ : False
જવાબ : Yes, d=5
જવાબ : Yes, d=0
જવાબ : No
જવાબ : Yes, d=11
જવાબ : Yes, d=-3
જવાબ : Next 2 terms are -11, -13
જવાબ : 3
જવાબ : 60
જવાબ : 6n -7
જવાબ : 10000
જવાબ : 40
જવાબ : Let A be the first term and D be the common difference of the given A.P.
pth term = A + (p – 1)D = a …(A)
qth term = A + (q – 1)D = b …(B)
rth term = A + (r – 1)D = c … (C)
L.H.S. = (a – b)r + (b – c)p + (c – a)q
= [A + (p – 1)D – (A + (q – 1)D)]r + [A + (q – 1)D – (A + (r – 1)D)]p + [A + (r – 1)D – (A + (p – 1)D)]q
= [(p – 1 – q + 1)D]r + [(q – 1 – r + 1)D]p + [(r – 1 – p + 1)D]q
= D[(p – q)r + (q – r)p + (r – p)q]
= D[pr – qr + qp – rp + rq – pq]
= D[0] = 0 = R.H.S.
જવાબ :
From (i),
a = 2(4) – 5 = 8 – 5 = 3
As an = a + (n – 1) d
∴ an = 3 + (n – 1) 4 = 3 + 4n – 4
an = (4n – 1)
જવાબ :
From (i),
a = 2(4) – 3
= 8 – 3 = 5
nth term = a + (n – 1) d
∴ nth term = 5 + (n – 1) 4
= 5 + 4n – 4 = (4n + 1)
જવાબ :
From (A) and (B), a = 4 – 1 = 3
As nth term = a + (n – 1) d
∴ nth term = 3 + (n – 1) 4
= 3 + 4n -4 = 4n -1
જવાબ : a = 8, d = a2 – a1 = 10 – 8 = 2, n = 60
a60 = a + 59d = 8 + 59(2) = 126
∴ Sum of its last 10 terms = S60 – S50
= (a + an) – (2a + (n – 1)d)
= (8 + a60) – (2 × 8 + (50 – 1)2)
= 30 (8 + 126) – 25 (16 + 98)
= 4020 – 25 × 114
= 4020 – 2850 = 1170
જવાબ : Let, ‘a’ be the first term and ‘d’ be the common difference of A.P. respectively,
a = 5, d = 12 – 5 = 7, n = 50
∴ an = a + (n – 1)d
a50 = 5 + 49(7) = 5 + 343 = 348
∴ Sum of its last 15 terms = S50 – S35
= (a + an) – (2a + (n − 1)d)
= (5 + 348) – [2(5) + (35 – 1)7]
= 25(353) – (10 + 238)
= 8825 – 35 × 124
= 8825 – 4340 = 4485
જવાબ : Sn = [2a + (n − 1) d] …(A)
Putting the value of d = 2 in (B), we get a = 7
∴ Sn = [2(7) + (n – 1). 2]
= .2 [7 + n – 1]
= n (n + 6) or n2 + 6n
જવાબ : Here, Sum of 10 prizes = 1600
S10 = 1600, d = -20, n = 10જવાબ : Here a = 8, l = 350, d = 9
As we know, a + (n − 1) d = a2
∴ 8 + (n – 1) 9 = 350
(n − 1) 9 = 350 – 8 = 342
n – 1 = = 38
n = 38 + 1 = 39
∴ There are 39 terms.
∴ Sn = (a + l)
∴ S39 = (8 + 350) = × 358
= 39 × 179 = 6981
જવાબ : Given: a = 7, S20 = -240
Here, Sn = [2a + (n – 1)d]
∴ S20 = [2(7) + (20 – 1)d]
-240 = 10(14 + 19d)
– = 14 + 19d = -24
19d = -24 – 14 = -38
⇒ d = = -2 …(A)
Again, an = a + (n – 1)d
∴ a24 = 7 + (24 – 1) (-2) … [From (A)
= 7 – 46 = -39
જવાબ : Here a = 5 … (A)
Here, a1 + a2 + a3 + a4 = (a5 + a6 + a7 + a8)
∴ a + (a + d) + (a + 2d) + (a + 3d)
= [(a + 4d) + (a + 5d) + (a + 6d) + (a + 780] …[an = a(n – 1)d
∴ 4a + 6d = (4a + 22d)
8a + 12d = 4a + 22d
8a – 4a = 22d – 12d
4a = 100 ⇒ 4(5) = 10d
d = = 2 …[From (A)
∴ Common difference, d = 2
જવાબ : As Sn = [2a + (n − 1)d]
S2 = 119
From (A) and (B), a = 17 – 3(5) = 17 – 15 = 2
∴Sn = [2(2) + (n – 1)5]
= [4 + 5n – 5]
= (5n – 1)
જવાબ : Solution:
a24 = 2 (10) … [Given
a + 23d = 2 (a +9d) [∵ an = a + (n – 1)d)
23d = 2a + 18d – a
23d – 18d = a ⇒ a = 5d …(A)
To prove: a72 = 4 (a15)
From (ii) and (iii), L.H.S = R.H.S …Hence Proved
જવાબ : Given that, a = -12, d=-9 + 12 = 3
Here, an = a + (n – 1)d = 21
∴ -12 + (n – 1).3 = 21
(n – 1).3 = 21 + 12 = 33
∴ n – 1 = 11
Total number of terms,
n = 11 + 1 = 12
New A.P. is
Here 1st term, a = -11
Common difference, d = -8 + 11 = 3;
Last term, an = 22; Number of terms, n= 12
જવાબ : Here, n = 50,
Here, S10 = 210
= (2a + 9d) = 210 ….[Sn = [2a+(n – 1)2]
5(2a + 9d) = 210
2a + 9d = = 42
⇒ 2a = 42 – 9d ⇒ a = …(A)
Now, 50 = (1 + 2 + 3 + …) + (36 + 37 + … + 50) Sum = 2565
Sum of its last 15 terms = 2565 …[Given
S50 – S35 = 2565
(2a + 49d) – (2a + 34d) = 2565
100a + 2450d – 70a – 1190d = 2565 × 2
30a + 1260d = 5130
3a + 1260 = 513 …[Dividing both sides by 10
જવાબ :
જવાબ : Classes: 1 + I + II + … + XII
Sections: 2(I) + 2(II) + 2(III) + … + 2(XII)
Total no. of trees
= 2 + 4 + 6 … + 24
= (2 × 2) + (2 × 4) + (2 × 6) + … + (2 × 24)
= 4 + 8 + 12 + … + 48
:: S12 = (4 + 48) = 6(52) = 312 trees
જવાબ : Money required by Ramkali for admission of her daughter = ₹2500
A.P. formed by saving
100, 120, 140, … upto 12 terms ….(A)
Let, a, d and n be the first term, common difference and number of terms respectively. Here, a = 100, d = 20, n = 12
Sn = (2a + (n − 1)d)
⇒ S12 = (2(100) + (12 – 1)20)
S12 = [2(100) + 11(20)] = 6[420] = ₹2520
જવાબ :
જવાબ : We have, Sm = 4m2 – m
Put m = 1,
S1 = 4(1)2 – (1)
= 4 – 1 = 3
Put m = 2,
S2 = 4(2)2 – 2
= 16 – 2 = 14
∴ a1 = S1 = 3 = a
a2 = S2 – S1 = 14 – 3 = 11
d = a2 – a1
d = 11 – 3 = 8
an = a + (n – 1)d = 107 …[Given in the ques.
∴ 3+ (n – 1)8 = 107
(n – 1)8 = 107 – 3 = 104
(n – 1) = = 13
n = 13 + 1 = 14
∴ a21 = a + 20d
= 3 + (20)8
= 3 + 160 = 163
જવાબ : We have, Sq = 63q – 3q2
Put q = 1 in the equation
S7 = 63(1) – 3(1)2
= 63 – 3 = 60
Put q = 2 in the equation
S2 = 63(2) – 3(2)2
= 126 – 12 = 114
∴ a = a1 = S1 = 60
a2 = S2 – S71 = 114 – 60 = 54
d = a2 – a1 = 54 – 60 = -6
pth term = -60
a + (p – 1)d = -60
60 + (p – 1)(-6) = -60
(p – 1)(-6) = -60 – 60 = -120
(p – 1) = = 20
p= 20 + 1 = 21
∴ a11 = a + 10d
= 60 + 10(-6)
= 60 – 60 = 0
Find the 10th term
1 |
1,3,5,7…. |
A |
57 |
2 |
2,4,6,8…. |
B |
51 |
3 |
2,7,12,17…. |
C |
19 |
4 |
21,24,27,30…. |
D |
20 |
Hide | Show
જવાબ :
1-C, 2-D, 3-A, 4-B
Find the nth term
1 |
2,6,10,14…. |
A |
8+10n |
2 |
13,9,5,1…. |
B |
4n-2 |
3 |
18,28,38,48…. |
C |
26-n |
4 |
25,24,23,22,…. |
D |
17-4n |
જવાબ :
1-B, 2-D, 3-A, 4-C
Find the 2nd term from last
1 |
-2,5,…….,68 |
A |
900 |
2 |
-100,0,….., 1000 |
B |
98 |
3 |
28,30,…… , 100 |
C |
15 |
4 |
75,45,….-15 |
D |
61 |
Hide | Show
જવાબ :
1-D, 2-A, 3-B, 4-C
જવાબ :
1-B, 2-A, 3-D, 4-C
Find the common differences
1 |
89,85,81,77 |
A |
11 |
2 |
100, 89, 78, 67 |
B |
-4 |
3 |
100, 111,122,133 |
C |
4 |
4 |
89, 93, 97, 101 |
D |
-11 |
Hide | Show
જવાબ :
1-B, 2-D, 3-A, 4-C
જવાબ :
1-B, 2-A, 3-D, 4-C
જવાબ :
1-D, 2-A, 3-B, 4-C
Find the nth term
1 |
a=2, d=4 |
A |
12-2n |
2 |
a=4, d=2 |
B |
14-4n |
3 |
a=10, d=-2 |
C |
4n-2 |
4 |
a=10, d=-4 |
D |
2+2n |
Hide | Show
જવાબ :
1-C, 2-D, 3-A, 4-B
Find the S8
1 |
1,3,5,7…. |
A |
252 |
2 |
4,6,8,10…. |
B |
156 |
3 |
2,7,12,17…. |
C |
88 |
4 |
21,24,27,30…. |
D |
72 |
Hide | Show
જવાબ :
1-D, 2-C, 3-B, 4-A
જવાબ :
1-B, 2-A, 3-D, 4-C
Math
Chapter 05 : Arithmetic Progressions
The GSEB Books for class 10 are designed as per the syllabus followed Gujarat Secondary and Higher Secondary Education Board provides key detailed, and a through solutions to all the questions relating to the GSEB textbooks.
The purpose is to provide help to the students with their homework, preparing for the examinations and personal learning. These books are very helpful for the preparation of examination.
For more details about the GSEB books for Class 10, you can access the PDF which is as in the above given links for the same.