જવાબ : 2
જવાબ : (– 4, 2)
જવાબ : Rectangle
જવાબ : 3
જવાબ : 8
જવાબ : √34
જવાબ : – 12
જવાબ : (x, y)
જવાબ : (–6, 5/2)
જવાબ : ± 4
જવાબ : 8
જવાબ : IV quadrant
જવાબ : (5, –3)
જવાબ : (0, – 10) and (4, 0)
જવાબ : 1:5
જવાબ : True
જવાબ : True
જવાબ : False
જવાબ : False
જવાબ : True
જવાબ : False
જવાબ : 2
જવાબ : (-3/2, 5)
જવાબ : 0
જવાબ : 5
જવાબ : 5
જવાબ : (125, 275)
જવાબ : First quadrant
જવાબ : (3,-10)
જવાબ : False
જવાબ : False
જવાબ : True
જવાબ : True
જવાબ : True
જવાબ : False
જવાબ : True
જવાબ : (3, -1)
જવાબ : 1
જવાબ : For these points to be collinear
A=0
Or
12[7(1−a)+5(a+2)+3(−2−1)]=012[7(1−a)+5(a+2)+3(−2−1)]=0
7-7a+5a+10-9=0
a=2
જવાબ : Let the ratio be m: n
Now
Coordinate of the intersection
x=3m+3nm+nx=3m+3nm+n
y=7m−2nm+ny=7m−2nm+n
Now these points should lie of the line, So
2(3m+2nm+n)+(7m−nm+n)−4=02(3m+2nm+n)+(7m−nm+n)−4=0
m:n=2:9
જવાબ : Y axis
જવાબ : Y’ axis
જવાબ : IV quadrant
જવાબ : III quadrant
જવાબ : I quadrant
જવાબ : X axis
જવાબ : III quadrant
જવાબ : II quadrant
જવાબ : Y’ axis
જવાબ : II quadrant
જવાબ : PQ = 10 …Given in question
PQ2 = 102 = 100 … [Squaring
(9 – x)2 + (10 – 4)2 = 100… (using the distance formula
(9 – x)2 + 36 = 100
(9 – x)2 = 100 – 36 = 64
(9 – x) = ± 8 …[Taking square-root
9 – x = 8 or 9 – x = -8
9 – 8 = x or 9+ 8 = x
x = 1 or x = 17
જવાબ : AB = 10 units … [Given in the question
AB2 = 102 = 100 … [Squaring
(11 – 3)2 + (y + 1)2 = 100
82 + (y + 1)2 = 100
(y + 1)2 = 100 – 64 = 36
y + 1 = ±6 … [Taking square-root
y = -1 ± 6 ∴ y = -7 or 5
જવાબ : PA = QA …[Given in the question
PA2 = QA2 … [Squaring
(3 – 6)2 + (y – 5)2 = (3 – 0)2 + (y + 3)2
9 + (y – 5)2 = 9 + (y + 3)2
(y – 5)2 = (y + 3)2
y – 5 = ±(y + 3) … [Taking square root
y – 5 = y + 3 y – 5 = -y – 3
0 = 8 … which is not possible ∴ y = 1
જવાબ : Let P(2, 4), A(5, k) and B(k, 7).
જવાબ : PA = PB …Given in the question
PA2 = PB2 … [Squaring
⇒ (k – 1 – 3)2 + (2 – k)2 = (k – 1 – k)2 + (2 – 5)2
⇒ (k – 4)2 + (2 – k)2 = (-1)2 + (-3)2
k2 – 8k + 16 + 4 + k2 – 4k = 1 + 9
2k2 – 12k + 20 – 10 = 0
2k2 – 12k + 10 = 0
⇒ k2 – 6k + 5 = 0 …[Dividing by 2
⇒ k2 – 5k – k + 5 = 0
⇒ k(k – 5) – 1(k – 5) = 0
⇒ (k – 5) (k – 1) = 0
⇒ k – 5 = 0 or k – 1 = 0
∴ k = 5 or k = 1
જવાબ :
Let P(0, y) be any point on y-axis.
PA = PB … [Given in the question
PA2 = PB2 … [Squaring
⇒ (4 – 0)2 + (8 – y)2 = (-6 – 0)2 + (6 – y)2
16 + 64 – 16y + y2 = 36 + 36 + y2 – 12y
80 – 72 = -12y + 16y
8 = 4y ⇒ y = 2
∴ Point P (0, 2).
Now, AP = (4-0)2 +(8-2)2
∴ Distance, AP = 52
જવાબ :
જવાબ : PA = PB … [Given in the question
PA2 = PB2 … [Squaring
⇒ [(a + b) – x]2 + [(b a) – y)2 = [(a – b) – x]2 + [(a + b) – y]2
⇒ (a + b)2 + x2 – 2(a + b)x + (b – a)2 + y2 – 2(b – a)y = (a – b)2 + x2 – 2(a – b)x + (a + b)2 + y2 – 2(a + b)y …[∵ (a – b) 2 = (b – a)2
⇒ -2(a + b)x + 2(a – b)x = -2(a + b)y + 2(b – a)y
⇒ 2x(-a – b + a – b) = 2y(-a – b + b – a)
⇒ -2bx = – 2ay
⇒ bx = ay
જવાબ : AB = AC … [Given in the question
∴ AB2 = AC2 …[Squaring
⇒ (3 – 0)2 + (p – 2)2= (p – 0)2 + (5 – 2)2
⇒ 9+ (p – 2)2 = p2 + 9
⇒ p2 – 4p + 4 – p2 = 0
⇒ -4p + 4 = 0
⇒ -4p = -4 ⇒ p = 1
જવાબ : PA = PB … [Given in the question
PA2 = PB2 … [Squaring
⇒ (2 + 2)2 + (2 – k)2 = (2 + 2k)2 + (2 + 3)2
16 + 4 + k2 – 4k = 4 + 4k2 + 8k + 25
4k2 + 8k + 25 – k2 + 4k – 16 = 0
3k2 + 12k + 9 = 0
⇒ k2 + 4k + 3 = 0 …[Dividing by 3
k2 + 3k + k + 3 = 0
k(k + 3) + 10k + 3) = 0
(k + 1) (k + 3) = 0
k + 1 = 0 or k + 3 = 0
k = -1 or k = -3
AP2 = (2+2)2 + (2-k)2
When k = -1
AP2 = (2+2)2 + (2+1)2 = 25
જવાબ :
Opposite sides BC = AD = 4/√5જવાબ : Join OA and OB. …[radii of a circle
∴ OA = OB OA2 = OB2 …[Squaring both sides
⇒ (2 + 1)2 + (-3y – y)2 = (5 – 2)2 + (7 + 3y)2
⇒ 9+ (-4y)2 = 9 + (7 + 3y)2
⇒ 16y2 = 49 + 42y + 9y2
⇒ 16y2 – 9y2 – 42y – 49 = 0
⇒ 7y2 – 42y – 49 = 0
⇒ y2 – 6y – 7 = 0 …[Dividing by 7
⇒ y2 – 7y + y – 7 = 0
⇒ y(y – 7) + 1(y – 7) = 0
⇒ (y – 7) (y + 1) = 0
y – 7 = 0 or y + 1 = 0
y = 7 or y = -1
(i) Taking y = 7
જવાબ : Given in the question : A(2, 3), B(-2, 2), C(-1, -2), D(3, -1)
AB = BC = CD = DA …[All four sides are equal
AC = BD …[ diagonals are equal
=> ABCD is a Square.
જવાબ : Let p (-2, 3), q(8,3), r(6, 7).
(pq)2 = (8 + 2)2 + (3 – 3)2 = 102 + 02 = 100
(qr)2 = (6 – 8)2 + (7 – 3)2 = (-2)2 + 42 = 20
(pr)2 = (6 + 2)2 + (7 – 3)2 = 82 + 42 = 80
Now, (qr)2 + (pr)2= 20 + 80 = 100 = (pq)2
…[By converse of Pythagoras’ theorem
Therefore, Points p, q, r are the vertices of a right triangle.
જવાબ :
=> Diagonals also bisect each other.
જવાબ : A(-2, 1), B(a, b) and C(4, -1) are collinear…..{given in the question
∴ x1(y2 – y3) + x2(y3 – y1) + x3(y1 – y2) = 0
⇒ -2[b – (-1)] + a(-1 – 1) + 4(1 – b) = 0
⇒ -2b – 2 – 2a + 4 – 4b = 0
⇒ -2a – 6b = -2
⇒ a + 3b = 1 … [Dividing by (-2)
⇒ a = 1 – 3 …..(A)
We have, a – b = 1 …[Given in the question
(1 – 3b) – b = 1 …[From (A)
1 – 3b – b = 1
-4b = 1 – 1 = 0 ∴ b = 0/-4 = 0
From (A), a = 1 – 3(0) = 1 – 0 = 1
∴ a = 1, b = 0
જવાબ : A(-1, -4), B(b, c), C(5, -1) are collinear ……Given in the question
∴ x1(y2 – y3) + x2(y3 – y1) + x3(y1 – y2) = 0
⇒ -1(c + 1) + b(-1 + 4) + 5(-4 – c) = 0
⇒ -c – 1 – b + 4b – 20 – 5c = 0
⇒ 3b – 6c = 21
⇒ – b – 2c = 7 …[Dividing by 3
⇒ b = 7 + 2c ……(A)
We have, 2b + c = 4 … [Given in the question
2(7 + 2c) + c = 4 … [From (A)
⇒ 14 + 4c + c = 4
⇒ 5c = 4 – 14 = -10 ⇒ c = -2
⇒ b = 7 + 2(-2) = 3 … [From (A)
∴ b = 3, c = -2
જવાબ : Given
જવાબ : P(x, y), R(z, t).
Match the distance
1 |
A(9, 3) and B(15, 11) |
A |
17 |
2 |
A(7, −4) and B(−5, 1) |
B |
3√2 |
3 |
A(−6, −4) and B(9, −12) |
C |
10 |
4 |
A(1, −3) and B(4, −6) |
D |
13 |
જવાબ :
1-C, 2-D, 3-A, 4-B
જવાબ :
1-B, 2-D, 3-A, 4-C
Distance between the points
1 |
A(2, −1) and B(5, 3) |
A |
10 |
2 |
A(2,−3) and B(10,-9) |
B |
√10 |
3 |
A(0, 2) and B(3, 1) |
C |
2√13 |
4 |
A(6, 5) and B(0,9) |
D |
5 |
જવાબ :
1-D, 2-A, 3-B, 4-C
જવાબ :
1-B, 2-A, 3-D, 4-C
જવાબ :
1-B, 2-D, 3-A, 4-C
Point equidistant from AB
1 |
A(5, 1) and B(− 1, 5) |
A |
(3,0) |
2 |
A(6, −1) and B(2, 3) |
B |
(2,3) |
3 |
A(5, 3) and B(5, −5) |
C |
(− 2, 3) |
4 |
A(3, − 1) and B(2, 8) |
D |
(3, −1) |
જવાબ :
1-B, 2-A, 3-D, 4-C
Point collinear with the following
1 |
(5, 2) and (9, 5) |
A |
(6, 9) |
2 |
(2, 3) and (8, 11) |
B |
(1, −1) |
3 |
(0, 1) and (−6, −7) |
C |
(−2, 5) |
4 |
(0, 1) and (2, −3) |
D |
(−1, −1) |
જવાબ :
1-B, 2-D, 3-A, 4-C
Distance between the points
1 |
B(5, 2) and C(9, 5) |
A |
10 |
2 |
A(1, −1) and C(9, 5) |
B |
5 |
3 |
A(6, 9) and C(−6, −7) |
C |
15 |
4 |
A(−1, −1) and C(8, 11) |
D |
20 |
જવાબ :
1-B, 2-A, 3-D, 4-C
Distance between the points
1 |
A(1, −1) and B(5, 2) |
A |
2√5 |
2 |
B(0, 1) and C(−6, −7) |
B |
4√5 |
3 |
B(0, 1) and C(2, −3) |
C |
5 |
4 |
A(−2, 5) and C(2, −3) |
D |
10 |
જવાબ :
1-C, 2-D, 3-A, 4-B
Coordinates and Type of triangle
1 |
A(3, 0), B(6, 4) and C(− 1, 3) |
A |
Equilateral triangle |
2 |
A(2, 4), B(2, 6) and C(2+√3, 5) |
B |
Isosceles right triangle |
3 |
A(13,-2), B(9-8) and C(5-2) |
C |
Scalene Triangle |
4 |
A(−2, k), B(−2k, −3) and C (2, 1) |
D |
Isosceles triangle |
જવાબ :
1-B, 2-A, 3-D,4-D
Math
Coordinate Geometry
The GSEB Books for class 10 are designed as per the syllabus followed Gujarat Secondary and Higher Secondary Education Board provides key detailed, and a through solutions to all the questions relating to the GSEB textbooks.
The purpose is to provide help to the students with their homework, preparing for the examinations and personal learning. These books are very helpful for the preparation of examination.
For more details about the GSEB books for Class 10, you can access the PDF which is as in the above given links for the same.