જવાબ : 2
જવાબ : 5 cm
જવાબ : 25 cm
જવાબ : two diameters
જવાબ : 10√2 cm
જવાબ : 8 cm
જવાબ : 10 cm
જવાબ : 45∘
જવાબ : 140∘
જવાબ : 16 cm
જવાબ : 120∘
જવાબ : 15 cm
જવાબ : 50°
જવાબ : 35∘
જવાબ : 2√3cm
જવાબ : 70°
જવાબ : 10 cm
જવાબ : 45∘
જવાબ : 100°
જવાબ : 30∘
જવાબ : 3√3cm
જવાબ : 126∘
જવાબ : 4 cm
જવાબ : 50°
જવાબ : 32∘
જવાબ : 90∘
જવાબ : 44∘
જવાબ : 90∘
જવાબ : 60 cm2
જવાબ : 40°
જવાબ : √125 cm
જવાબ : 30∘
જવાબ : Perimeter of △EDF = 18 cm
જવાબ : ⇒ ∠AOB = 1350
જવાબ : 70°
જવાબ : 22.5 cm
જવાબ : 7.6 cm
જવાબ : 9 cm
જવાબ : 50
જવાબ : 36 cm
જવાબ : 2 cm
જવાબ : 2 cm
જવાબ : 21 cm
જવાબ : 3 cm
જવાબ : 5 cm
જવાબ : 5 cm
જવાબ : 2 cm
જવાબ : 7.5 cm
જવાબ : 4√10 cm
જવાબ : AB is the diameter
∴∠APB = 90∘ (angle in a semi circle is a right angle)
By using alternate segment theorem
We have ∠APB = ∠PAT = 30∘
Now, in △APB
∠BAP + ∠APB + ∠BAP = 180∘ (Angle sum property of triangle)
⇒ ∠BAP = 180∘ − 90∘ − 30∘ = 60∘
Now, ∠BAP = ∠APT + ∠PTA (Exterior angle property)
⇒ 60∘ = 30∘ + ∠PTA
⇒ ∠PTA = 60∘ − 30∘ = 30∘
We know that sides opposite to equal angles are equal.
∴ AP = AT
In right triangle ABP
sin∠ABP= AP/BA
⇒sin30°=AT/BA
⇒1/2=AT/BA
∴ BA : AT = 2 : 1
જવાબ :
OPB is a right angled triangle, with ∠OBP=90° ……..{ the tangent is perpendicular to the radius
By using pythagoras theorem in △OPB, we get
⇒OB2+PB2=OP2
જવાબ :
let P be a point such that OP=25 cm.
જવાબ :
In right triangle AOP
AO2 = OP2 + PA2
⇒ (6.5)2 = (2.5)2 + PA2
⇒ PA2 = 36
⇒ PA = 6 cm
Since, the perpendicular drawn from the centre bisect the chord.
∴ PA = PB = 6 cm
Now, AB = AP + PB = 6 + 6 = 12 cm
Hence, the length of the chord of the larger circle is 12 cm.
જવાબ : we have
AD = AF, BD = BE and CE = CF
Now, AD + BD = 12 cm .....(A)
AF + FC = 10 cm
⇒ AD + FC = 10 cm .....(B)
BE + EC = 8 cm
⇒ BD + FC = 8 cm .....(C)
Adding all these we get
AD + BD + AD + FC + BD + FC = 30
⇒2(AD + BD + FC) = 30
⇒AD + BD + FC = 15 cm .....(D)
Solving (A) and (D), we get
FC = 3 cm
Solving (B) and (D), we get
BD = 5 cm
Solving (C) and (D), we get
and AD = 7 cm
∴ AD = AF = 7 cm, BD = BE = 5 cm and CE = CF = 3 cm
જવાબ : Given, PA and PB are the tangents to a circle with centre O and CD is a tangent at E and PA=14 cm. Tangents drawn from an external point are equal. ∴PA=PB, CA=CE and DB=DE
Perimeter of △PCD= PC + CD+PD= (PA−CA)+(CE+DE)+(PB−DB) =(PA−CE)+(CE+DE)+(PB−DE) =(PA+PB) =2PA (∵PA=PB) =(2×14) cm =28 cm ∴Perimeter of △PCD =28 cm.જવાબ :
We know that
∴ ∠OCA = ∠OCB = 90∘ (the radius and tangent are perperpendular at their point of contact)
Now, In △OCA and △OCB
∠OCA = ∠OCB = 90∘
OA = OB (Radii of the larger circle)
OC = OC (Common)
By RHS congruency
△OCA ≅ △OCB
∴ CA = CB
જવાબ : Tangents drawn to a circle from an external point are equal.
∴AP=AR=7 cm, CQ=CR=5 cm. Now, BP=(AB−AP)=(10−7)=3 cm ∴BP=BQ=3 cm ∴BC=(BQ+QC)=> BC=3+5 = 8 ∴The length of BC is 8 cm.જવાબ : Here, OA=OB And OA⊥AP, OA⊥BP
∴∠OAP=90ᵒ, ∠OBP=90ᵒ ∴∠OAP+∠OBP= 90ᵒ +90ᵒ =180ᵒ ∴∠AOB+∠APB=180ᵒ (Since,∠OAP+∠OBP+∠AOB+∠APB=360ᵒ) Sum of opposite angle of a quadrilateral is 180°. Hence, A,O,B and P are concyclic.જવાબ :
Given, AB=6 cm, BC=7 cm and CD=4 cm.
જવાબ : AR = AQ, BR = BP and CP = CQ ……………..( tangent segments to a circle from the same external point are congruent.)
Now, AB = AC
⇒ AR + RB = AQ + QC
⇒ AR + RB = AR + QC
⇒ RB = QC
⇒ BP = CP
Hence, P bisects BC at P.
જવાબ : EA = EC for the circle having centre O1 (tangent segments to a circle from the same external point are congruent)
Similarly,જવાબ :
∠OTP = ∠OQP = 90∘ (radius and tangent are perperpendular)
Now, In quadrilateral OQPT
∠QOT + ∠OTP + ∠OQP + ∠TPQ = 360∘ [Angle sum property of a quadrilateral]
⇒ ∠QOT + 90∘ + 90∘ + 70∘ = 360∘
⇒ 250∘ + ∠QOT = 360∘
⇒ ∠QOT = 110∘
∴∠TRQ= ½ (∠QOT) =55° (angle subtended by an arc at the centre is double the angle subtended by the arc)
જવાબ :
∠OBP = ∠OAP = 90∘ (radius and tangent are perperpendular)
Now, In quadrilateral AOBP
∠AOB + ∠OBP + ∠APB + ∠OAP = 360∘ [Angle sum property of a quadrilateral]
⇒ ∠AOB + 90∘ + 50∘+ 90∘ = 360∘
⇒ 230∘+ ∠BOC = 360∘
⇒ ∠AOB = 130∘
જવાબ : AB + CD = AD + BC (In quadrilateral circumscribes a circle, sum of opposites sides is equal to the sum of other opposite sides.)
⇒6 + 8 = AD + 9
⇒ AD = 5 cm
જવાબ : AB is the chord passing through the centre
So, AB is the diameter
∴∠APB = 90ᵒ (angle in a semi circle is a right angle)
જવાબ : DS = DR, AR = AQ (tangent segments to a circle from the same external point are congruent)
Now, AD = 23 cm
⇒ AR + RD = 23
⇒ AR = 23 − RD
⇒ AR = 23 − 5 [∵ DS = DR = 5]
⇒ AR = 18 cm
જવાબ :
Suppose CD and AB are two parallel tangents of a circle with centre O
∠OQC = ∠ORA = 90ᵒ (radius and tangent are perperpendular)
Now, ∠OQC + ∠POQ = 180ᵒ (co-interior angles)
⇒ ∠POQ = 180ᵒ − 90ᵒ = 90ᵒ
Similarly, Now, ∠ORA + ∠POR = 180ᵒ (co-interior angles)
⇒ ∠POR = 180ᵒ − 90ᵒ = 90ᵒ
Now, ∠POR + ∠POQ = 90ᵒ + 90ᵒ = 180ᵒ
Since, ∠POR and ∠POQ are linear pair angles whose sum is 180ᵒ
Hence, QR is a straight line passing through centre O.
જવાબ :
Let TR = y and TP = x
જવાબ :
We know that tangent segments to a circle from the same external point are congruent.
Now, we have
AE = AF, BD = BE = 6 cm and CD = CF = 9 cm
Now,
Area(△ABC)=Area(△BOC)+Area(△AOB)+Area(△AOC)
જવાબ : Given- O is the centre of two concentric circles of radii OA=6 cm and OB=4 cm.
∠OAP=∠OBP=90ᵒ ∴From right angled △OAP, OP2=OA2+PA2 =>OP=√(OA2+PA2 ) =>OP=√(62+102) =>OP=√136 cm. ∴From right-angled △OAP, OP2 =OB2 +PB2 =>PB=√(OP2−OB2) =>PB=√(136−16) =>PB=√120 cm =>PB=10.9 cm. ∴The length of PB is 10.9 cm.જવાબ :
1-C, 2-A, 3-B, 4-D
જવાબ :
1-B, 2-D, 3-A, 4-C
જવાબ :
1-B, 2-C, 3-D, 4-A
જવાબ :
1-D, 2-C, 3-B, 4-A
જવાબ :
1-D, 2-C, 3-A, 4-B
જવાબ :
1-D, 2-C, 3-A, 4-B
જવાબ :
1-D, 2-C, 3-B, 4-A
જવાબ :
1-B, 2-C, 3-D, 4-A
જવાબ :
1-B, 2-D, 3-A, 4-C
જવાબ :
1-C, 2-A, 3-B, 4-D
Math
Chapter 10 : Circles
The GSEB Books for class 10 are designed as per the syllabus followed Gujarat Secondary and Higher Secondary Education Board provides key detailed, and a through solutions to all the questions relating to the GSEB textbooks.
The purpose is to provide help to the students with their homework, preparing for the examinations and personal learning. These books are very helpful for the preparation of examination.
For more details about the GSEB books for Class 10, you can access the PDF which is as in the above given links for the same.