જવાબ : no real roots
જવાબ : real roots
જવાબ : real roots
જવાબ : real roots
જવાબ : real roots
જવાબ : no real roots
જવાબ : real roots
જવાબ : no real roots
જવાબ : 2x2−7x+3=0
(x−7/4)2−(7/4)2+3/2=0
(x−7/4)2=49/16−3/2=0
(x−7/4)2=25/16
x−7/4=±5/4
or
x=1/2 or 3
જવાબ : (x+4/2)2−(4/2)2−5=0
(x+2)2−9 = 0
(x+2)2= 9
x+2 = ±3
x=1 or -5
જવાબ : x2−11x+30=0
Solution- x2−11x+30=0
x(x-5)-(x-6)=0
Roots are 5 and 6
જવાબ : x2−3x−10=0
Solution- x2−3x−10=0
x(x−5)+2(x−5)=0
(x+2)(x−5)=0
So roots are x=-2 and 5
જવાબ : False
જવાબ : True
જવાબ : True
જવાબ : True
જવાબ : True
જવાબ : False
જવાબ : True
જવાબ : True
જવાબ : True
જવાબ : 12
જવાબ : (-4,-10)
જવાબ :
It is not a quadratic equation
જવાબ : Non-real
જવાબ : √23,√25−23,25
જવાબ : quadratic equation
જવાબ : not quadratic equation
જવાબ : a quadratic equation
જવાબ : quadratic equation
જવાબ : y= 3/2 or 1
જવાબ : y= -2 or 4/3
જવાબ : y=-1 or 9/10
જવાબ : y= -1 or 9/10
જવાબ : x= 3 or -2/11
જવાબ : y=16 or -18
જવાબ : x= 3 or 4
જવાબ : Real roots
જવાબ : Real roots
જવાબ : No real roots
જવાબ : No real roots
જવાબ : Real roots
જવાબ : Real roots
જવાબ : Real roots
જવાબ : 2/3 , ½
જવાબ : 1, 42
જવાબ : -1, 6
જવાબ : -1, -2
જવાબ : -5,-1
જવાબ : 15
જવાબ : We have, 2x2 – 5x + = 0
Here, a = 2, h = -5, c =
D = b2 – 4ac
∴ D = (-5)2 – 4 (2)()
= 25 – 24 = 1
જવાબ : 4x2 – 4ax + (a2 – b2) = 0
⇒ [4x2 – 4ax + a2] – b2 = 0
⇒ [(2x)2 – 2(2x)(a) + (a)2] – b2 = 0
⇒ (2x – a)2 – (b)2 = 0
⇒ (2x – a + b) (2x – a – b) = 0
⇒ 2x – a + b = 1 or 2x – a – b = 0
2x = a – b or 2x = a + b
∴ x = or x =
જવાબ : 3x2 – 2 x + 2 = 0
⇒ 3x2 – x – x + 2 = 0
⇒ x (x – – (x – ) = 0
⇒ (x – )(x – ) = 0
⇒ x – = 0 ⇒ x =
∴ x = ….[
જવાબ :
⇒ 5(x + 3) = (11 – x) (x + 1)જવાબ :
જવાબ :
⇒ 5x = (2x + 3) (4 – 3x)જવાબ : Here ‘a’ = a – b, ‘b’ = b – c, ‘c’ = c – a
As the roots are equal
D = 0
b2 – 4ac = 0
⇒ (b – c)2 – 4(a – b)(c – a) = 0
⇒ b2 + c2 – 2bc – 4(ac – a2 – bc + ab) = 0
⇒ b2 + c2 – 2bc – 4ac + 4a2 + 4bc – 4ab = 0
⇒ 4a2 + b22 + c2 – 4ab + 2bc – 4ac = 0
⇒ (-2a)2 + (b)2 + (c)22 + 2(-2a)(b) + 2(b)(c) + 2(c)(-2a) = 0
⇒ [(-2a) + (b) + (c)]2 = 0 ….[∵ (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
Taking square-root on both sides
-2a + b + c = 0
⇒ b + c = 2a ∴ 2a = b + c
જવાબ : The given quadratic equation can be written as
x2 – 2x – 2 = 0
a = , b = -2, c= -2
D = b2 – 4ac
જવાબ : Given equation can be written as
2(x2 + 3 x – 30) = 0
x2 + 3 x – 30 = 0
જવાબ : For the given quadratic equation to have equal roots, D = 0
a = (p + 1), b = -6(p + 1), c = 3(p + 9)
D = b2 – 4ac
⇒ [-6(p + 1)]2 – 4(p + 1).3 (p + 9) = 0
⇒ 36(p + 1)2 – 12(p + 1) (p + 9) = 0
⇒ 12(p + 1) (3p + 3 – p – 9) = 0
⇒ 12(p + 1)(2p – 6) = 0
⇒ 24(p + 1)(p – 3) = 0
⇒ p + 1 = 0 or p – 3 = 0
⇒ p = -1 (rejected) or p = 3
∴ p = 3
જવાબ : The given quadratic equation can be written as
kx2 + x2 – 2(k – 1)x + 1 = 0
(k + 1) x2 – 2 (k – 1) x + 1 = 0 …(A)
=> a = (k + 1), b = -2(k – 1), c = 1
As the roots are equal, D = 0
D = b2 – 4ac
⇒ (-2(k – 1)]2 – 4 × (k + 1) × 1 = 0
⇒ 4(k − 1)2 – 4(k + 1) = 0
⇒ 4k2 + 4 – 8k – 4k – 4 = 0
⇒ 4k2 – 12k = 0 ⇒ 4k(k – 3) = 0
k = 3 or k = 0 (rejected)
∴ k = 3
Putting k = 3 put in equation (A), we get
⇒ 4x2 – 4x + 1 = 0
⇒ 4x2 – 2x – 2x + 1 = 0
⇒ 2x(2x – 1) – 1(2x – 1) = 0
⇒ (2x – 1) (2x – 1) = 0
⇒ 2x – 1 = 0 or 2x – 1 = 0
⇒ x = or x =
Roots are
જવાબ : y2 + k2 = 2(k + 1)y
y2 – 2(k + 1)y + k2 = 0
=> a = 1, b = -2(k + 1), c = k2
D = 0 … [Roots are equal
b2 – 4ac = 0
∴ [-2(k + 1)]2 – 4 × (1) × (k2) = 0
⇒ 4(k2 + 2k + 1) – 4k2 = 0
⇒ 4k2 + 8k + 4 – 4k2 = 0
⇒ 8k + 4 = 0
⇒ 8k = -4 ∴ k =
જવાબ : We have, (k – 12)x2 + 2(k – 12)x + 2 = 0
The given quadratic equation will have equal roots if D = 0
⇒ b2 – 4ac = 0
=> a = (k – 12), b = 2(k – 12), c = 2
b2 – 4ac = 0
0 = 4(k – 12)2 – 4 × (k – 12) × 2
0 = (k – 12)[4(k – 12) – 4 × 2]
0 = (k – 12) 4[k – 12 – 2]
0 = 4(k – 12) (k – 14)
∴ 4(k – 12)(k – 14) = 0
∴ k = 12 (rejected) or k = 14
But k cannot be equal to 12 because in that case the given equation will imply 2 = 0 which is not true.
∴ k = 14
જવાબ : We have, (k + 4) x2 + (k + 1) x + 1 = 0
=> a = k + 4, b = k + 1, c = 1
As the roots are equal
D =0
b2 – 4ac = 0
∴ (k + 1)2 – 4(k + 4)(1) = 0
k2 + 2k + 1 – 4k – 16 = 0
k2 – 2k – 15 = 0
k2 – 5k + 3k – 15 = 0
k(k – 5) + 3(k – 5) = 0
(k – 5)(k + 3) = 0
k – 5 = 0 or k + 3= 0
k = 5 or k = -3
∴ k = 5 and -3
જવાબ : We have, kx(x – 2) + 10 = 0
kx2 – 2kx + 10 = 0
Here a = k, b= -2k, c= 10
As the roots are equal
D = 0
As b2 – 4ac = 0
∴ (-2 k)2 – 4(k)(10) = 0
20k2 – 40k = 0
⇒ 20k(k – 2) = 0
∴ 20k = 0 or k – 2 = 0
k = 0 (rejected as Coeff. of x2 cannot be zero) or k = 2
∴ k= 2
જવાબ : We have, mx(6x + 10) + 25 = 0
6mx2 + 10mx + 25 = 0
Here a = 6m, b = 10m, c = 25
As the roots are equal
D = 0
b2 – 4ac = 0
∴ (10m)2 – 4(6m) (25) = 0
100m2 – 600m = 0 ⇒ 100m (m – 6) = 0
100m = 0 or m – 6 = 0
m = 0 or m = 6
…[Rejecting m = 0, as coeff. of x2 cannot be zero
∴ m = 6
જવાબ : We have, kx(3x – 4) + 4 = 0
3kx2 – 4kx + 4 = 0
Here a = 3k, b = -4k, c = 4
As the roots are equal
D = 0
b2 – 4ac = 0
∴ (-4k)2 – 4(3k) (4) = 0
16k2 – 48k = 0
16k (k – 3) = 0
16k = 0 or k – 3 = 0
k = 3 or k = 0…[Rejecting k = 0, as coeff. of x2 cannot be zero
∴ k = 3
જવાબ : We have, x2 – 4ax – b2 + 4a2 = 0
⇒ x2 – 4ax + 4a2 – b2= 0
⇒ [x2 – 2(x)(2a) + (2a)2] – (b)2 = 0
(x – 2a)2 – (b)2 = 0
(x – 2a + b) (x – 2a – b) = 0
x – 2a + b = 0 or x – 2a – b = 0
∴ x = 2a – b or x = 2a + b
જવાબ : Given: 3x2 – 2kx + 12 = 0
Here a = 3, b = -2k, c = 12
As the roots are equal
D = 0
b2 – 4ac = 0
∴ (-2k)2 – 4(3) (12) = 0
⇒ 4k2 – 144 = 0 ⇒ k2 = = 36
∴ k =
જવાબ : Given: 2x2 + kx + 3 = 0
Here a = 2, b = k, c= 3
As the roots are equal
D = 0
As b2 – 4ac = 0 ∴ K2 – 4(2)(3) = 0
K2 – 24 = 0 or k2 = 24
∴ k =
Find the roots of the solution
1 4x2−4a2x+(a4−b4)=0 | A −(a+3) and (a−2) |
2 x2+5x−(a2+a−6)=0 | B a−2b and a+2b |
3 x2−2ax−(4b2−a2)=0 | C (a2+b2)/2 and (a2−b2)/2 |
4 x2−(2b−1)x+(b2−b−20)=0 | D b−5and b+4 |
Hide | Show
જવાબ :
1-C, 2-A, 3-B, 4-D
Find the roots of the solution
1 x2−(1+√2)x+√2=0 | A ¼ |
2 9x2+6x+1=0 | B √2 and 1 |
3 100x2−20x+1=0 | C −1/3 |
4 2x2−x+1/8=0 | D 1/10 |
Hide | Show
જવાબ :
1-B, 2-C, 3-D, 4-A
Find the roots of the solution
1 x2−(√3+1)x+√3=0 | A −1 and −8/5 |
2 x2+3√3x−30=0 | B −√2 and −5√2/2 |
3 √2x2+7x+5√2=0 | C −5√3 and 2√3. |
4 5x2+13x+8=0 | D 1 and √3 |
Hide | Show
જવાબ :
1-D, 2-C, 3-B, 4-A
Find the roots of the solution
1 4√6x2−13x−2√6=0 | A √6 and √6/3 |
2 3x2−2√6x+2=0 | B √5 and 2√5 |
3 √3x2−2√2x−2√3=0 | C √6/3 |
4 x2−3√5x+10=0 | D −6√8 and 26√3 |
Hide | Show
જવાબ :
1-D, 2-C, 3-A, 4-B
Find the roots of the solution
1 √3x2+10x−8√3=0 | A −7√3 and 7√7 |
2 √3x2+11x+6√3 =0 | B −√7 and 13√7/7 |
3 3√7x2+4x−√7=0 | C −3√3 and −2√3/3 |
4 √7x2−6x−13√7=0 | D 2/√3 and −4√3 |
Hide | Show
જવાબ :
1-D, 2-C, 3-A, 4-B
Find the roots of the solution
1 15x2−28=x | A −3√2 and 2√2. |
2 4−11x=3x2 | B −1/16 and 1/3 |
3 48x2−13x−1=0 | C −4 and 1/3 |
4 x2+2√x−6=0 | D −4/3 and 7/5 |
જવાબ :
1-D, 2-C, 3-B, 4-A
Find the roots of the solution
1 6x2 + 11x + 3 = 0 | A 25/4 and −4 |
2 6x2+x−12=0 | B −1/3 and −3/2 |
3 3x2−2x−1=0 | C 4/3 and −3/2 |
4 4x2−9x=100 | D 1 and −1/3 |
જવાબ :
1-B, 2-C, 3-D, 4-A
Find the roots of the solution
1. 10x – 1/x = 3 | A -a and a/2 |
2 2/x2−5/x+2=0 | B 1/2 and −1/5 |
3 2x2+ax−a2=0 | C −(a+b)/2 and (a−b)/2 |
4 4x2+4bx−(a2−b2)= 0 | D ½ and 2 |
જવાબ :
1-B, 2-D, 3-A, 4-C
Find the roots of the solution
1 x2+6x+5=0 | A −5 and −7 |
2 9x2-3x-2=0 | B −1 and −5 |
3 x2+12x+35=0 | C 7 and 11 |
4 x2=18x−77 | D -1/3 and 2/3 |
Hide | Show
જવાબ :
1-B, 2-D, 3-A, 4-C
Find the roots of the solution
1 (2x − 3)(3x + 1) = 0 | A 0 and -5/4 |
2 4x2 + 5x = 0 | B −9 and 9 |
3 3x2-243=0 | C 3/2 and -1/3 |
4 2x2+x-6=0 | D -2 and -3/2 |
Hide | Show
જવાબ :
1-C, 2-A, 3-B, 4-D
Math
Chapter 04 : Quadratic Equations
The GSEB Books for class 10 are designed as per the syllabus followed Gujarat Secondary and Higher Secondary Education Board provides key detailed, and a through solutions to all the questions relating to the GSEB textbooks.
The purpose is to provide help to the students with their homework, preparing for the examinations and personal learning. These books are very helpful for the preparation of examination.
For more details about the GSEB books for Class 10, you can access the PDF which is as in the above given links for the same.