CBSE Solutions for Class 10 English

GSEB std 10 science solution for Gujarati check Subject Chapters Wise::

State quadratic equations have real roots or no real root :- −x2−2x−2=0

Hide | Show

જવાબ : no real roots


State quadratic equations have real roots or no real root :-  x−1x−3=0, x≠0
 

Hide | Show

જવાબ :  real roots


State quadratic equations have real roots or no real root :- 2x2−6x+3=0

Hide | Show

જવાબ : real roots


State quadratic equations have real roots or no real root :- −13x2+3x+7=0

Hide | Show

જવાબ : real roots


State quadratic equations have real roots or no real root :- 11x2−12x−1=0

Hide | Show

જવાબ : real roots


 State quadratic equations have real roots or no real root :- 9x2+x+3=0

Hide | Show

જવાબ : no real roots


State quadratic equations have real roots or no real root :- 3x2+6x+1=0

Hide | Show

જવાબ : real roots


State quadratic equations have real roots or no real root :- sx2+x+7=0

Hide | Show

જવાબ : no real roots


Find the roots of the quadratic equation using square method :-2x2−7x+3=0

Hide | Show

જવાબ : 2x2−7x+3=0 (x−7/4)2−(7/4)2+3/2=0
(x−7/4)2=49/16−3/2=0
(x−7/4)2=25/16
x−7/4=±5/4
or
x=1/2 or 3


Find the roots of the quadratic equation using square method :-  x2+4x−5=0

Hide | Show

જવાબ : (x+4/2)2−(4/2)2−5=0
(x+2)2−9 = 0
(x+2)2= 9
x+2 = ±3
x=1 or -5


Find the roots of the quadratic equation using factorization technique :-

Hide | Show

જવાબ : x2−11x+30=0
Solution- x2−11x+30=0
x(x-5)-(x-6)=0
Roots are 5 and 6


Find the roots of the quadratic equation using factorization technique :-

Hide | Show

જવાબ : x2−3x−10=0
Solution- x2−3x−10=0
x(x−5)+2(x−5)=0
(x+2)(x−5)=0
So roots are x=-2 and 5


Find whether statement is True or False  :- Every quadratic equation will have rational roots

Hide | Show

જવાબ : False


Find whether statement is True or False  :- if the roots of the quadratic equation are irrational, the coefficient of the term x will also be irrational

Hide | Show

જવાબ : True


Find whether statement is True or False  :- if the roots of the quadratic equation are rational, the coefficient of the term x will also be rational.

Hide | Show

જવાબ : True


Find whether statement is True or False  :- for k > 0,the quadratic equation 2x2+6x−k=02x2+6x−k=0 will definitely have real roots

Hide | Show

જવાબ : True


Find whether statement is True or False  :- In a quadratic equation ax2+bx+c=0ax2+bx+c=0 ,if a and c are of opposite sign, then quadratic equation will definitely have real roots

Hide | Show

જવાબ : True


In a quadratic equation ax2+bx+c=0ax2+bx+c=0 ,if a and c are of same sign and b is zero ,the quadratic equation has real roots

Hide | Show

જવાબ : False


Find whether statement is True or False  :- A quadratic equation can have at most 2 real roots
 

Hide | Show

જવાબ : True


Find whether statement is True or False  :- The roots of the equation x2−1=0x2−1=0 are 1,-1

Hide | Show

જવાબ : True


Find whether statement is True or False  :- There are no reals roots of the quadratic equation x2+4x+5=0x2+4x+5=0

Hide | Show

જવાબ : True


Find a natural number whose square diminished by 84 is thrice the 8 more of given number

Hide | Show

જવાબ : 12
 


The roots of the quadratic equation x2+14x+40=0 are

Hide | Show

જવાબ : (-4,-10)


State whether the equation is a quadratic equation or not a quadratic equation x5+x+20=0

Hide | Show

જવાબ :
It is not a quadratic equation
 


The roots of the quadratic equation are real or non-real x2+2x+5=0

Hide | Show

જવાબ : Non-real


Find the roots of 6x2−√2x−2=0 by the factorisation of the corresponding quadratic polynomial.

Hide | Show

જવાબ : √23,√25−23,25


Find Whether the equation is a quadratic equation and isn’t? :- x3−x2+2x+1=(x+1)3
 

Hide | Show

જવાબ : quadratic equation


Find Whether the equation is a quadratic equation and isn’t? :- (x+2)(x−1)=x2−2x−5
 

Hide | Show

જવાબ : not quadratic equation


Find Whether the equation is a quadratic equation and isn’t? :- x2+3x=(−1)(1−3x)2
 

Hide | Show

જવાબ : a quadratic equation


Find Whether the equation is a quadratic equation and isn’t? :- (x+2)2=2(x+3) 

Hide | Show

જવાબ : quadratic equation


State the quadratic equations have real roots, no real roots :-2x2−5x+3=0

Hide | Show

જવાબ : y= 3/2 or 1


State the quadratic equations have real roots, no real roots :-3y2+4y=2(y+4) 

Hide | Show

જવાબ : y= -2 or 4/3


State the quadratic equations have real roots, no real roots :-14x+4x2=2x−5

Hide | Show

જવાબ : y=-1 or 9/10


State the quadratic equations have real roots, no real roots :-9−y−10y2=0

Hide | Show

જવાબ : y= -1 or 9/10


State the quadratic equations have real roots, no real roots :-11x2−31x−6=0

Hide | Show

જવાબ : x= 3 or -2/11


State the quadratic equations have real roots, no real roots :-y2+(y+2)2=580

Hide | Show

જવાબ : y=16 or -18


 State the quadratic equations have real roots, no real roots :-x2+(7−x)2=25

Hide | Show

જવાબ : x= 3 or 4


State the quadratic equations have real roots, no real roots :-2x2−x−2=0

Hide | Show

જવાબ : Real roots


State the quadratic equations have real roots, no real roots :-2x2−6x+3=0

Hide | Show

જવાબ : Real roots
 


State the quadratic equations have real roots, no real roots :-10x2+3x+7=0

Hide | Show

જવાબ : No real roots


State the quadratic equations have real roots, no real roots :-11x2+5x+1=0

Hide | Show

જવાબ : No real roots


State the quadratic equations have real roots, no real roots :-9x2+x−3=0

Hide | Show

જવાબ : Real roots


State the quadratic equations have real roots, no real roots :-3x2+5x+1=0

Hide | Show

જવાબ : Real roots


State the quadratic equations have real roots, no real roots :- x2+8x+7=0

Hide | Show

જવાબ : Real roots


Find the roots with the quadratic equations :-  6x2 – 7x + 2 =0

Hide | Show

જવાબ : 2/3 , ½ 


Find the roots with the quadratic equations :-  x2 – 43x +42 = 0

Hide | Show

જવાબ : 1, 42


Find the roots with the quadratic equations :-  x2 - 5x -6 = 0

Hide | Show

જવાબ : -1, 6


Find the roots with the quadratic equations :-  x2 + 3x +2=0

Hide | Show

જવાબ : -1, -2


Find the roots with the quadratic equations :-  x2 + 6x +5=0

Hide | Show

જવાબ : -5,-1


Had Ram scored 10 more marks in her mathematics test out of 30 marks, 9 times these marks would have been the square of her actual marks. How many marks did she get in the test?

Hide | Show

જવાબ : 15
 


In the roots of the following quadratic equation: 23x2 – 5x + 3 = 0 (2011D)


 

Hide | Show

જવાબ : We have, 2\sqrt{3}x2 – 5x + \sqrt{3} = 0
Here, a = 2
\sqrt{3}, h = -5, c = \sqrt{3}
D = b2 – 4ac
D = (-5)2 – 4 (2\sqrt{3})(\sqrt{3})
= 25 – 24 = 1


Solve for x: 4x2 – 4ax + (a2 – b2) = 0 (2011OD)

Hide | Show

જવાબ : 4x2 – 4ax + (a2 – b2) = 0
[4x2 – 4ax + a2] – b2 = 0
[(2x)2 – 2(2x)(a) + (a)2] – b2 = 0
(2x – a)2 – (b)2 = 0
(2x – a + b) (2x – a – b) = 0
2x – a + b = 1 or 2x – a – b = 0
2x = a – b or 2x = a + b

x = \frac{a-b}{2} or x = \frac{a+b}{2}


Solve for x: 3x2 – 26x + 2 = 0 (2012D)

Hide | Show

જવાબ : 3x2 – 2\sqrt{6} x + 2 = 0
3x2 – \sqrt{6}x – \sqrt{6}x + 2 = 0
 \sqrt{3}x (\sqrt{3}x – \sqrt{2} – \sqrt{2}(\sqrt{3}x – \sqrt{2}) = 0
(\sqrt{3}x – \sqrt{2})(\sqrt{3}x – \sqrt{2}) = 0
 \sqrt{3}x – \sqrt{2} = 0 x = \frac{\sqrt{2}}{\sqrt{3}}
x = \frac{\sqrt{6}}{3} ….[\frac{\sqrt{2}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{6}}{3}


Solve the equation 14/(x+3) – 1 = 5/(x+1); x ≠ -3, -1, for x. (2014D)
 

Hide | Show

જવાબ :

5(x + 3) = (11 – x) (x + 1)
5x + 15 = 11x + 11 – x2 – x
5x + 15 – 11x – 11 + x2 + x = 0
x2 – 5x + 4 = 0
x2 – 4x – x + 4 = 0
x(x – 4) – 1(x – 4) = 0
(x – 1) (x – 4) = 0
x – 1=0 ; x – 4 = 0
x= 1 ; x = 4


Solve the equation 3/(x+1) – ½ = 2/(3x-1) ; x ≠ -1, x ≠ 1/3 for x. (2014D)

Hide | Show

જવાબ :

  1. 2(2x + 2) = (5 – x)(3x – 1)
    4x + 4 = 15x – 5 – 3x2 + x
    4x + 4 – 15x + 5 + 3x2 – x = 0
    3x2 – 12x + 9 = 0
    x2 – 4x + 3 = 0 …[Dividing the equation by 3
    x2 – 3x – x + 3 = 0
    x(x – 3) – 1(x – 3) = 0
    (x – 1) (x – 3) = 0
    x – 1 = 0 or x – 3 = 0
    x = 1 ; x = 3


Solve the equation 4/x – 3 = 5/(2x+3) ≠ -1, x ≠ -3/2, for x. (2014D)
 

Hide | Show

જવાબ : Important Questions for Class 10 Maths Chapter 4 Quadratic Equations 14

5x = (2x + 3) (4 – 3x)
5x = 8x – 6x2 + 12 – 9x
5x – 8x + 6x2 – 12 + 9x = 0
6x2 + 6x – 12 = 0
x2 + x – 2 = 0 …[Dividing the equation by 6
x2 + 2x – x – 2 = 0
x(x + 2) – 1(x + 2) = 0
x – 1 = 0 or x + 2 = 0
x = 1 or x = -2


If the roots of the quadratic equation (a – b)x2 + (b – c)x + (c – a) = 0 are equal, prove that 2a = b + c. (2016OD)

Hide | Show

જવાબ : Here ‘a’ = a – b, ‘b’ = b – c, ‘c’ = c – a
As the roots are equal

D = 0
b2 – 4ac = 0

(b – c)2 – 4(a – b)(c – a) = 0
b2 + c2 – 2bc – 4(ac – a2 – bc + ab) = 0
b2 + c2 – 2bc – 4ac + 4a2 + 4bc – 4ab = 0
4a2 + b22 + c2 – 4ab + 2bc – 4ac = 0
(-2a)2 + (b)2 + (c)22 + 2(-2a)(b) + 2(b)(c) + 2(c)(-2a) = 0
[(-2a) + (b) + (c)]2 = 0                     ….[ (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
Taking square-root on both sides
-2a + b + c = 0

b + c = 2a 2a = b + c


Solve for x: 3x2 – 2√23x – 23 = 0 (2015OD)
 

Hide | Show

જવાબ : The given quadratic equation can be written as
\sqrt{3}x2 – 2\sqrt{23}x – 2\sqrt{3} = 0
a = 
\sqrt{3}, b = -2\sqrt{2}, c= -2\sqrt{3}
D = b2 – 4ac

​​​​​​​


Solve for x: 2x2 + 63x – 60 = 0 (2015OD)

Hide | Show

જવાબ : Given equation can be written as
2(x2 + 3
\sqrt{3} x – 30) = 0
x2 + 3
\sqrt{3} x – 30 = 0

, a = 1, b = 3\sqrt{3}, C = -30
D = b2 – 4ac


 


Find that value of p for which the quadratic equation (p + 1)x2 – 6(p + 1)x + 3 (p + 9) = 0, p ≠ -1 had equal roots. (2015D)

Hide | Show

જવાબ : For the given quadratic equation to have equal roots, D = 0
a = (p + 1), b = -6(p + 1), c = 3(p + 9)
D = b2 – 4ac

[-6(p + 1)]2 – 4(p + 1).3 (p + 9) = 0
36(p + 1)2 – 12(p + 1) (p + 9) = 0
12(p + 1) (3p + 3 – p – 9) = 0
12(p + 1)(2p – 6) = 0
24(p + 1)(p – 3) = 0
p + 1 = 0 or p – 3 = 0
p = -1 (rejected) or p = 3
p = 3


Find that non-zero value of k, for which the quadratic equation kx2 + 1 – 2(k – 1)x + x2 = 0 has equal roots. Hence find the roots of the equation. (2015D)

Hide | Show

જવાબ : The given quadratic equation can be written as
kx2 + x2 – 2(k – 1)x + 1 = 0
(k + 1) x2 – 2 (k – 1) x + 1 = 0 …(A)
=>  a = (k + 1), b = -2(k – 1), c = 1
As the roots are equal, D = 0
D = b2 – 4ac

(-2(k – 1)]2 – 4 × (k + 1) × 1 = 0
4(k − 1)2 – 4(k + 1) = 0
4k2 + 4 – 8k – 4k – 4 = 0
4k2 – 12k = 0 4k(k – 3) = 0
k = 3 or k = 0 (rejected)

k = 3
Putting k = 3 put in equation (A), we get

4x2 – 4x + 1 = 0
4x2 – 2x – 2x + 1 = 0
2x(2x – 1) – 1(2x – 1) = 0
(2x – 1) (2x – 1) = 0
2x – 1 = 0 or 2x – 1 = 0
x = \frac{1}{2} or x = \frac{1}{2}
Roots are \frac{1}{2} \text { and } \frac{1}{2}


For what value of k, are the roots of the quadratic equation y2 + k2 = 2 (k + 1)y equal? (2013OD)

Hide | Show

જવાબ : y2 + k2 = 2(k + 1)y
y2 – 2(k + 1)y + k2 = 0
=> a = 1, b = -2(k + 1), c = k2
D = 0 … [Roots are equal
b2 – 4ac = 0

[-2(k + 1)]2 – 4 × (1) × (k2) = 0
4(k2 + 2k + 1) – 4k2 = 0
4k2 + 8k + 4 – 4k2 = 0
8k + 4 = 0
8k = -4 k = \frac{-4}{8}=\frac{-1}{2}


For what value of k, are the roots of the quadratic equation: (k – 12)x2 + 2(k – 12)x + 2 = 0 equal? (2013OD)

Hide | Show

જવાબ : We have, (k – 12)x2 + 2(k – 12)x + 2 = 0
The given quadratic equation will have equal roots if D = 0

b2 – 4ac = 0
=>  a = (k – 12), b = 2(k – 12), c = 2
b2 – 4ac = 0
0 = 4(k – 12)2 – 4 × (k – 12) × 2
0 = (k – 12)[4(k – 12) – 4 × 2]
0 = (k – 12) 4[k – 12 – 2]
0 = 4(k – 12) (k – 14)

4(k – 12)(k – 14) = 0
k = 12 (rejected) or k = 14
But k cannot be equal to 12 because in that case the given equation will imply 2 =
0 which is not true.
k = 14


For what values of k, the roots of the quadratic equation (k + 4)x2 + (k + 1)x + 1 = 0 are equal? (2013D)

Hide | Show

જવાબ : We have, (k + 4) x2 + (k + 1) x + 1 = 0
=>  a = k + 4, b = k + 1, c = 1
As the roots are equal

D =0
b2 – 4ac = 0

(k + 1)2 – 4(k + 4)(1) = 0
k2 + 2k + 1 – 4k – 16 = 0
k2 – 2k – 15 = 0
k2 – 5k + 3k – 15 = 0
k(k – 5) + 3(k – 5) = 0
(k – 5)(k + 3) = 0
k – 5 = 0 or k + 3= 0
k = 5 or k = -3

k = 5 and -3


For what value of k, the roots of the quadratic equation kx(x – 25) + 10 = 0, are equal? (2013D)

Hide | Show

જવાબ : We have, kx(x – 2\sqrt{5}) + 10 = 0
kx2 – 2
\sqrt{5}kx + 10 = 0
Here a = k, b= -2
\sqrt{5}k, c= 10
As the roots are equal

D = 0
As b2 – 4ac = 0
(-2 \sqrt{5}k)2 – 4(k)(10) = 0
20k2 – 40k = 0

20k(k – 2) = 0
20k = 0 or k – 2 = 0
k = 0 (rejected as  Coeff. of x
2 cannot be zero) or k = 2
k= 2


Find the value of m for which the roots of the equation. mx (6x + 10) + 25 = 0, are equal. (2012OD)

Hide | Show

જવાબ : We have, mx(6x + 10) + 25 = 0
6mx2 + 10mx + 25 = 0
Here a = 6m, b = 10m, c = 25
As the roots are equal

D = 0
b2 – 4ac = 0

(10m)2 – 4(6m) (25) = 0
100m2 – 600m = 0
100m (m – 6) = 0
100m = 0 or m – 6 = 0
m = 0 or m = 6
…[Rejecting m = 0, as coeff. of x2 cannot be zero

m = 6


Find the value of k for which the roots of the equation kx(3x – 4) + 4 = 0, are equal. (20120D)

Hide | Show

જવાબ : We have, kx(3x – 4) + 4 = 0
3kx2 – 4kx + 4 = 0
Here a = 3k, b = -4k, c = 4
As the roots are equal

D = 0
b2 – 4ac = 0

(-4k)2 – 4(3k) (4) = 0
16k2 – 48k = 0
16k (k – 3) = 0
16k = 0 or k – 3 = 0
k = 3 or k = 0…[Rejecting k = 0, as coeff. of x2 cannot be zero

k = 3


Solve the following quadratic equation for x: x2 – 4ax – b2 + 4a2 = 0 (2012OD)

Hide | Show

જવાબ : We have, x2 – 4ax – b2 + 4a2 = 0
x2 – 4ax + 4a2 – b2= 0
[x2 – 2(x)(2a) + (2a)2] – (b)2 = 0
(x – 2a)2 – (b)2 = 0
(x – 2a + b) (x – 2a – b) = 0
x – 2a + b = 0 or x – 2a – b = 0

x = 2a – b or x = 2a + b


Find the value(s) of k so that the quadratic equation 3x2 – 2kx + 12 = 0 has equal roots. (2012D)

 

Hide | Show

જવાબ : Given: 3x2 – 2kx + 12 = 0
Here a = 3, b = -2k, c = 12
As the roots are equal

D = 0
b2 – 4ac = 0

(-2k)2 – 4(3) (12) = 0
4k2 – 144 = 0 k2 = \frac{144}{4} = 36
k = \pm \sqrt{36}=\pm 6


Find the value(s) of k so that the quadratic equation 2x2 + kx + 3 = 0 has equal roots. (2012D)

 

Hide | Show

જવાબ : Given: 2x2 + kx + 3 = 0
Here a = 2, b = k, c= 3
As the roots are equal

D = 0
As b2 – 4ac = 0
K2 – 4(2)(3) = 0
K2 – 24 = 0 or k2 = 24

k = \sqrt{2 \times 2 \times 6}=\pm 2 \sqrt{6}


There are No Content Availble For this Chapter

Find the roots of the solution

1    4x2−4a2x+(a4−b4)=0     A    −(a+3) and (a−2)
 
2    x2+5x−(a2+a−6)=0     B    a−2b and a+2b
 
3    x2−2ax−(4b2−a2)=0     C    (a2+b2)/2 and (a2−b2)/2
 
4    x2−(2b−1)x+(b2−b−20)=0     D    b−5and b+4

 

Hide | Show

જવાબ :

1-C, 2-A, 3-B, 4-D

Find the roots of the solution
 

1    x2−(1+√2)x+√2=0     A    ¼ 
 
2    9x2+6x+1=0    B    √2 and 1
 
3    100x2−20x+1=0     C    −1/3
 
4    2x2−x+1/8=0     D    1/10

 

Hide | Show

જવાબ :

1-B, 2-C, 3-D, 4-A

Find the roots of the solution
 

1    x2−(√3+1)x+√3=0     A     −1 and −8/5
2    x2+3√3x−30=0   B    −√2 and −5√2/2
 3    √2x2+7x+5√2=0     C    −5√3 and 2√3.
4    5x2+13x+8=0     D    1 and √3

 

Hide | Show

જવાબ :

1-D, 2-C, 3-B, 4-A

Find the roots of the solution
 

1    4√6x2−13x−2√6=0     A    √6 and √6/3
2    3x2−2√6x+2=0    B    √5 and 2√5
3    √3x2−2√2x−2√3=0     C    √6/3
4    x2−3√5x+10=0     D    −6√8 and 26√3

 

Hide | Show

જવાબ :

1-D, 2-C, 3-A, 4-B
 

Find the roots of the solution
 

1    √3x2+10x−8√3=0     A    −7√3 and 7√7
2    √3x2+11x+6√3 =0     B    −√7 and 13√7/7
3    3√7x2+4x−√7=0     C    −3√3 and −2√3/3
4    √7x2−6x−13√7=0     D    2/√3 and −4√3

 

Hide | Show

જવાબ :

1-D, 2-C, 3-A, 4-B

Find the roots of the solution

1    15x2−28=x     A    −3√2 and 2√2.
2    4−11x=3x2     B    −1/16 and 1/3
3    48x2−13x−1=0     C    −4 and 1/3
4    x2+2√x−6=0     D    −4/3 and 7/5


 

Hide | Show

જવાબ :

1-D, 2-C, 3-B, 4-A

Find the roots of the solution

1    6x2 + 11x + 3 = 0     A    25/4 and −4
2    6x2+x−12=0     B    −1/3 and −3/2
3    3x2−2x−1=0     C    4/3 and −3/2
4    4x2−9x=100     D    1 and −1/3


 

Hide | Show

જવાબ :

1-B, 2-C, 3-D, 4-A

Find the roots of the solution

1. 10x – 1/x = 3     A    -a and a/2 
 
2    2/x2−5/x+2=0     B    1/2 and −1/5
 
3    2x2+ax−a2=0     C    −(a+b)/2 and (a−b)/2
 
4    4x2+4bx−(a2−b2)= 0     D    ½ and 2
Hide | Show

જવાબ :

1-B, 2-D, 3-A, 4-C

Find the roots of the solution
 

1    x2+6x+5=0     A    −5 and −7
2    9x2-3x-2=0     B    −1 and −5
3    x2+12x+35=0     C    7 and 11
4    x2=18x−77     D    -1/3 and 2/3

 

Hide | Show

જવાબ :

1-B, 2-D, 3-A, 4-C

Find the roots of the solution
 

1    (2x − 3)(3x + 1) = 0     A    0 and -5/4
2    4x2 + 5x = 0     B    −9 and 9
3    3x2-243=0     C    3/2 and -1/3
4    2x2+x-6=0     D    -2 and -3/2

 

Hide | Show

જવાબ :

1-C, 2-A, 3-B, 4-D
 

Download PDF

Take a Test

Choose your Test :

Quadratic Equations

Math
Chapter 04 : Quadratic Equations

Browse & Download CBSE Books For Class 10 All Subjects

The GSEB Books for class 10 are designed as per the syllabus followed Gujarat Secondary and Higher Secondary Education Board provides key detailed, and a through solutions to all the questions relating to the GSEB textbooks.

The purpose is to provide help to the students with their homework, preparing for the examinations and personal learning. These books are very helpful for the preparation of examination.

For more details about the GSEB books for Class 10, you can access the PDF which is as in the above given links for the same.