જવાબ : Height of cylinder = 20 cm And diameter = 7 cm and then radius = 3.5 cm Total surface area of article = lateral surface of cylinder
જવાબ :
જવાબ :
જવાબ : Radius of cylinder = Radius of hemisphere = 10.5 cm Height of cylinder = (14.5 10.5) cm = 4 cm Capacity = Volume of cylinder + Volume of hemisphere
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ : Radius of cone = Radius of cylinder = 2.5 m Height of cylinder = 21 m Slant height of cone = 8 m Total surface area of the rocket = (curved surface area of cone + curved surface area of cylinder + area of base)
જવાબ :
જવાબ : Hence, the curved surface area of the tent = 1034 m2 Cost of canvas = Rs.(1034 × 80) = Rs. 82720
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ : Diameter of sphere = 18 cm
Radius of copper sphere =
Length of wire = 108 m = 10800 cm
But the volume of wire = Volume of sphere
Hence the diameter = 2r = (0.3 2) cm = 0.6 cm
જવાબ : Diameter of sphere = 42 cm Radius of sphere = Volume of sphere = Diameter of cylindrical wire = 2.8 cm Radius of cylindrical wire = Volume of cylindrical wire = Volume of cylindrical wire = volume of sphere Hence length of the wire 63 m.
જવાબ : Radius of sphere = 3 cm Volume of sphere = Radius of small sphere = Volume of small sphere = Let number of small balls be n Hence, the number of small balls = 1000.
જવાબ : Volume of sphere (when r = 1 cm) = = Volume of sphere (when r = 8 cm) = = Let the number of balls = n
જવાબ : Diameter of sphere = 21 cm Hence, radius of sphere = Volume of sphere = = Volume of cube = a3 = (1 1 1) Let number of cubes formed be n Volume of sphere = n Volume of cube Hence, number of cubes is 4851.
જવાબ : Volume of hemisphere of radius 9 cm Volume of circular cone (height = 72 cm) Volume of cone = Volume of hemisphere Hence radius of the base of the cone = 4.5 cm
જવાબ : External radius of shell = 12 cm and internal radius = 9 cm Volume of lead in the shell = Height of cylinder = 37 cm Volume of cylinder = Hence diameter of the base of the cylinder = 12 cm
જવાબ : Volume of third ball = Volume of spherical ball volume of 2 small balls
જવાબ : Radius of the cannon ball = 14 cm Volume of cannon ball = Radius of the cone = Let the height of cone be h cm Volume of cone = Hence, height of the cone = 35.84 cm
જવાબ : Radius of the sphere= Let the number of cones formed be n, then Hence, number of cones formed = 504
જવાબ : Inner radius of the bowl = 15 cm Volume of liquid in it = Radius of each cylindrical bottle = 2.5 cm and its height = 6 cm Volume of each cylindrical bottle Required number of bottles = Hence, bottles required = 60
જવાબ :
જવાબ : Internal radius = 3 cm and external radius = 5 cm Hence, height of the cone = 4 cm
જવાબ :
જવાબ : Radius of the cone = 12 cm and its height = 24 cm Volume of cone =
જવાબ :
જવાબ :
જવાબ :
જવાબ : Solution:
જવાબ : Solution:
જવાબ :
જવાબ :
જવાબ :
જવાબ : Height of cylinder= h1 = 6.5 cm Height of cone = h2 = 6.3 cm Radius of cylinder = radius of cone = radius of hemisphere = 3.5 cm Volume of solid = Volume of cylinder + Volume of cone + Volume of hemisphere
જવાબ : Diameter of spherical part of vessel = 21 cm
જવાબ : Radius of cylinder = 6 cm Height of cylinder = 8 cm Surface area of cylinder = 2 = 2× 6 × 8
જવાબ :
જવાબ :
જવાબ : Radius of cylinder = 6 cm Height of cylinder = 8 cm Volume of cylinder Volume of cone removed
જવાબ : Radius of cylinder r1= 5cm And height of cylinder h1= 9.8cm Radius of cone r2 = 2.1 cm And height of cone h2= 4cm Volume of water left in tub = (volume of cylindrical tub – volume of solid)
જવાબ :
જવાબ :
જવાબ :
જવાબ :
The radii of two cylinders are in the ratio of 2 : 3 and their heights are in the ratio of 5 : 3. Calculate the ratio of their volumes.
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
જવાબ :
Radius = 3 cm
1 |
Total Surface Area of Sphere |
A |
36π cm3 |
2 |
Volume of Sphere |
B |
27π cm2 |
3 |
Total Surface Area of Hemisphere |
C |
36π cm2 |
4 |
Volume of Sphere |
D |
27π cm3 |
જવાબ :
1-C, 2-A, 3-B, 4-D
Cuboid
1 |
Total Surface Area |
A |
2h(l+b) + lb |
2 |
Total Surface Area without lid |
B |
2h(l+b) |
3 |
Curved Surface Area |
C |
2(lb + bh + lh) |
4 |
Volume |
D |
Lbh |
Hide | Show
જવાબ :
1-C, 2-A, 3-B, 4-D
Radius = 3cm and Height of cone = 4cm
1 |
Total Surface Area |
A |
15π cm2 |
2 |
Slant Height |
B |
24π cm2 |
3 |
Curved Surface Area |
C |
12π cm3 |
4 |
Volume |
D |
5 cm |
જવાબ :
1-B, 2-D, 3-A, 4-C
Radius = 2cm and Height of cylinder = 6cm
1 |
Total Surface Area |
A |
42π cm3 |
2 |
Total Surface Area without lid |
B |
32π cm2 |
3 |
Curved Surface Area |
C |
28π cm2 |
4 |
Volume |
D |
24π cm2 |
જવાબ :
1-B, 2-C, 3-D, 4-A
Side of cube =4 cm
1 |
Total Surface Area |
A |
64 cm3 |
2 |
Total Surface Area without lid |
B |
64 cm2 |
3 |
Curved Surface Area |
C |
80 cm2 |
4 |
Volume |
D |
96 cm2 |
જવાબ :
1-D, 2-C, 3-B, 4-A
Length= 2 cm, Height= 3 cm and Bredth=4 cm
1 |
Total Surface Area |
A |
36cm2 |
2 |
Total Surface Area without lid |
B |
24cm3 |
3 |
Curved Surface Area |
C |
44cm2 |
4 |
Volume |
D |
52cm2 |
જવાબ :
1-D, 2-C, 3-A, 4-B
1 |
Total Surface Area of Sphere |
A |
3πr2 |
2 |
Volume of Sphere |
B |
23πr3 |
3 |
Total Surface Area of Hemisphere |
C |
43πr3 |
4 |
Volume of Sphere |
D |
4πr2 |
જવાબ :
1-D, 2-C, 3-A, 4-B
જવાબ :
1-A, 2-C, 3-B
Cylinder
1 |
Total Surface Area |
A |
πr2h |
2 |
Total Surface Area without lid |
B |
2πr(h+r) |
3 |
Curved Surface Area |
C |
πr(2h+r) |
4 |
Volume |
D |
2πrh |
જવાબ :
1-B, 2-C, 3-D, 4-A
Cube
1 |
Total Surface Area |
A |
4s2 |
2 |
Total Surface Area without lid |
B |
6s2 |
3 |
Curved Surface Area |
C |
s3 |
4 |
Volume |
D |
5s2 |
જવાબ :
1-B, 2-D, 3-A, 4-C
Math
Chapter 13 : Surface Areas and Volumes
The GSEB Books for class 10 are designed as per the syllabus followed Gujarat Secondary and Higher Secondary Education Board provides key detailed, and a through solutions to all the questions relating to the GSEB textbooks.
The purpose is to provide help to the students with their homework, preparing for the examinations and personal learning. These books are very helpful for the preparation of examination.
For more details about the GSEB books for Class 10, you can access the PDF which is as in the above given links for the same.